This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346969 #66 Oct 07 2021 15:02:28 %S A346969 1,3,5,9,7,15,21,11,25,27,63,13,35,33,81,147,17,45,39,99,171,357,19, %T A346969 49,51,117,189,399,903,23,77,55,153,207,441,987,2499,29,91,57,165,243, %U A346969 483,1029,2709,6069,31,121,65,195,261,513,1113,2793,6321,13915,37,135,69,231,275,567,1197,2961,6325,14847,29095 %N A346969 1 together with the square array T(n,k) read by upward antidiagonals in which T(n, k), n >= 1, is the n-th odd number j >= 3 such that the symmetric representation of sigma of j has k >= 2 parts. %C A346969 This sequence is a permutation of the odd positive integers. %C A346969 The first row of table T(n,k) preceded by a(1) = 1 is A239663; the first column is the sequence A065091 of odd primes; the second column contains the squares of the odd primes as a subsequence (see also A247687). %e A346969 The 10x10 initial submatrix of table T(n,k): %e A346969 n\k | 2 3 4 5 6 7 8 9 10 11 ... %e A346969 ------------------------------------------------------------------ %e A346969 1 | 3 9 21 63 147 357 903 2499 6069 13915 %e A346969 2 | 5 15 27 81 171 399 987 2709 6321 14847 %e A346969 3 | 7 25 33 99 189 441 1029 2793 6325 15125 %e A346969 4 | 11 35 39 117 207 483 1113 2961 6783 15141 %e A346969 5 | 13 45 51 153 243 513 1197 3025 6875 15351 %e A346969 6 | 17 49 55 165 261 567 1239 3087 6909 15729 %e A346969 7 | 19 77 57 195 275 609 1265 3249 7011 16023 %e A346969 8 | 23 91 65 231 279 621 1281 3339 7203 16611 %e A346969 9 | 29 121 69 255 297 651 1375 3381 7353 16779 %e A346969 10| 31 135 75 273 333 729 1407 3591 7581 17157 %e A346969 ... %e A346969 a(9) = 25 = T(3,3) since only 9 and 15 are smaller odd numbers whose symmetric representation of sigma consists of three parts. All 3 parts of the symmetric representation of sigma for 9 and for 25 have width 1 while the center part for that of 15 has width 2. %t A346969 (* function a341969 is defined in A341969 *) %t A346969 sArray[b_, pMax_] := Module[{list=Table[{}, pMax+1], i, p}, For[i=3, i<=b, i+=2, p=Length[Select[SplitBy[a341969[i], #!=0&], #[[1]]!=0&]]; If[p<=pMax+1&&Length[list[[p]]]<pMax, AppendTo[list[[p]], i]]]; If[MatrixQ[Rest[list]], Transpose[Rest[list]], "square matrix not filled"]] %t A346969 parts[n_] := n-row[n-1](row[n-1]+1)/2 %t A346969 rank[n_] := row[n-1]-parts[n]+2 %t A346969 a346969[sMatrix_, aD_] := Prepend[Map[sMatrix[[ rank[#], parts[#]]] &, Range[aD (aD + 1)/2]], 1] /; MatrixQ[sMatrix] && aD <= Length[sMatrix] %t A346969 m40000=sArray[40000, 11] (* entire 11x11 table filled *) %t A346969 a346969[m40000, 11] (* sequence data: 1 followed by the first 11 antidiagonals in the table *) %Y A346969 Cf. A065091, A237270, A237271, A237593, A239663, A247687, A320537, A341969, A341970, A341971, A348171. %K A346969 nonn,tabf %O A346969 1,2 %A A346969 _Hartmut F. W. Hoft_, Oct 06 2021