This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346970 #66 Sep 08 2022 08:16:16 %S A346970 2,3,5,10,21,55,182,357,1105,2958,16588,51243,106981,608685,3003455, %T A346970 7497910,52350909,168539462,1822961393,3079378759 %N A346970 Smallest c which can be split into positive integers a,b with a+b=c, such that a*b*c is divisible by each of the first n primes. %C A346970 From _David A. Corneth_, Aug 10 2021: (Start) %C A346970 Let k be a candidate value for a(n) and let g = gcd(c, primorial(n)) = gcd(c, A002110(n)). Let p be the largest prime that primorial(n)/g is divisible by. Then at least one of a and b is divisible by p. %C A346970 So we can check multiples m of p < k and see if m*(k-m)*k is divisible by primorial(n). %C A346970 If that is the case then k can be written as a + b where 0 < a,b < k and a*b*k is divisible by primorial(n) and a(n) = k when each of 1..k-1 do not have that property. (End) %C A346970 From _Kevin P. Thompson_, Jun 30 2022 and Sep 07 2022: (Start) %C A346970 n a(n) = c a b a * b * c %C A346970 ---- ---------- ---------- ----------- --------------- %C A346970 1 2 1 1 prime(1)# %C A346970 2 3 1 2 prime(2)# %C A346970 3 5 2 3 prime(3)# %C A346970 4 10 3 7 prime(4)# %C A346970 5 21 10 11 prime(5)# %C A346970 6 55 13 42 prime(6)# %C A346970 7 182 17 165 prime(7)# %C A346970 8 357 110 247 prime(8)# %C A346970 9 1105 231 874 prime(9)# %C A346970 10 2958 1463 1495 prime(10)# %C A346970 11 16588 1615 14973 2 * prime(11)# %C A346970 12 51243 16835 34408 4 * prime(12)# %C A346970 13 106981 49335 57646 prime(13)# %C A346970 14 608685 81548 527137 2 * prime(14)# %C A346970 15 3003455 595034 2408421 7 * prime(15)# %C A346970 16 7497910 2741301 4756609 3 * prime(16)# %C A346970 17 52350909 2975429 49375480 4 * prime(17)# %C A346970 18 168539462 55318167 113221295 9 * prime(18)# %C A346970 19 1822961393 223726938 1599234455 83 * prime(19)# %C A346970 20 3079378759 256763535 2822615224 4 * prime(20)# (End) %C A346970 a(21) <= 111610913771, a(22) <= 111610913771 both via (a, b, c) = (54966571731, 56644342040, 111610913771). a(24) <= 8163073396289 via (a, b, c) = (133445799584, 8029627596705, 8163073396289). - _David A. Corneth_, Sep 07 2022 %F A346970 A002110(n)^(1/3) < a(n) <= A002110(n). - _David A. Corneth_, Aug 10 2021 %F A346970 a(2k) <= Product_{i=1..k} p_2i, a(2k+1) <= Product_{i=0..k} p_{2i+1} where p_i is the i-th prime. - _Chai Wah Wu_, Oct 14 2021 %F A346970 a(n) >= (4*A002110(n))^(1/3), strengthening David's result above. This inequality is strict for n > 1. - _Charles R Greathouse IV_, Jun 30 2022 %e A346970 a(4) = 10 via 3+7=10 and 3*7*10 = 210 which is divisible by each of the first 4 primes, namely 2, 3, 5 and 7. %e A346970 a(7) = 182 via 17+165=182. 17*165*182 = 510510 which is divisible by each of the first 7 primes, namely 2, 3, ..., 13, 17. %t A346970 Do[Monitor[k=1; While[!Or@@And@@@(IntegerQ/@(#/Prime@Range@n)&/@Times@@@(Join[{k}, #]&/@IntegerPartitions[k, {2}])), k++]; Print@k,k], {n, 20}] (* _Giorgos Kalogeropoulos_, Aug 16 2021 *) %o A346970 (PARI) a(n) = { if(n <= 3, return(prime(n))); P = vecprod(primes(n)); for(i = sqrtnint(P, 3) + 1, oo, if(iscanforA(n, i), return(i) ) ) } %o A346970 iscanforA(n, k) = { my(g = gcd(k, P), step); if(k^2*g < P, return(0)); step = hpf(P/g); forstep(i = step, k, step, if((i*(k-i)*k)%P == 0, return(1) ) ); 0 } %o A346970 hpf(n) = my(f = factor(n)); f[#f~, 1] \\ _David A. Corneth_, Aug 10 2021 %o A346970 (Python) %o A346970 from sympy import primorial, primefactors, gcd %o A346970 def A346970(n): %o A346970 c, ps = 2, primorial(n) %o A346970 while True: %o A346970 m = ps//gcd(ps,c) %o A346970 if m == 1: %o A346970 return c %o A346970 p = max(primefactors(m)) %o A346970 for a in range(p,c,p): %o A346970 if a*(c-a) % m == 0: %o A346970 return c %o A346970 c += 1 # _Chai Wah Wu_, Oct 13 2021 %Y A346970 Cf. A002110, A346971. %K A346970 nonn,more %O A346970 1,1 %A A346970 _Steven M. Altschuld_, Aug 09 2021 %E A346970 a(12)-a(16) from _David A. Corneth_, Aug 10 2021 %E A346970 a(17)-a(18) from _Kevin P. Thompson_, Jun 30 2022 %E A346970 a(19)-a(20) from _Kevin P. Thompson_, Sep 07 2022 %E A346970 a(20) corrected by _David A. Corneth_, Sep 07 2022