This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346971 #64 Oct 22 2021 21:23:11 %S A346971 2,3,4,8,10,12,24,45,54,88,120,182,182,360,540,1326,1326,3990,5040, %T A346971 5040,5040,9282,9282,25200,25200,65208,65208,118800,118800,651456, %U A346971 651456,651456,651456,651456,651456,2314200,2314200,2314200,2314200,16365396,16365396 %N A346971 Smallest c which can be split into positive parts a and b with a+b=c, such that the divisors of a,b,c cover all numbers up to n. %C A346971 a(37)..a(40) <= 2314200 via 1062048 + 1252152 = 2314200. - _David A. Corneth_, Aug 11 2021 %F A346971 a(n) <= A003418(n) and a(n) <= a(n+1). - _David A. Corneth_, Aug 11 2021 %F A346971 a(n) >= (4*A003418(n))^(1/3). - _Charles R Greathouse IV_, Oct 14 2021 %e A346971 a(5) = 8, 3+5=8, divisors of 3, 5, and 8 are {1,3}, {1,5}, and {1,2,4,8}, which covers all of {1,2,3,4,5}. %e A346971 a(9) = 45, 21+24=45, divisors of 21, 24, and 45 are {1,3,7,21}, {1,2,3,4,6,8,12,24}, and {1,3,5,9,15,45}, which covers all of {1,2,3,4,5,6,7,8,9}. %t A346971 a[1]=1;a[n_]:=(k=1;While[Length@Select[Union@*Flatten@*Divisors/@(Join[{k},#]&/@Rest@IntegerPartitions[k,2]),SubsetQ[#,Range@n]&]<1,k++];k);Array[a,16] (* _Giorgos Kalogeropoulos_, Aug 13 2021 *) %o A346971 (Python) %o A346971 from sympy import divisors %o A346971 from itertools import count %o A346971 def cond(a, b, c, n): %o A346971 return set(divisors(a)+divisors(b)+divisors(c)) >= set(range(1, n+1)) %o A346971 def a(n): %o A346971 if n == 1: return 1 %o A346971 for c in count(1): %o A346971 for a in range(1, c//2+1): %o A346971 if cond(a, c-a, c, n): return c %o A346971 print([a(n) for n in range(1, 17)]) # _Michael S. Branicky_, Aug 13 2021 %o A346971 (Python) %o A346971 def A346971(n): %o A346971 c, nlist = 1, list(range(1,n+1)) %o A346971 while True: %o A346971 mlist = [m for m in nlist if c % m] %o A346971 if len(mlist) == 0: return c %o A346971 p = max(mlist) %o A346971 for a in range(p,c,p): %o A346971 for m in mlist: %o A346971 if a % m and (c-a) % m: %o A346971 break %o A346971 else: %o A346971 return c %o A346971 c += 1 # _Chai Wah Wu_, Oct 13 2021 %Y A346971 Cf. A003418, A027750, A346970. %K A346971 nonn,more %O A346971 2,1 %A A346971 _Steven M. Altschuld_, Aug 09 2021 %E A346971 a(16)-a(26) from _Alois P. Heinz_, Aug 09 2021 %E A346971 a(27)-a(36) from _David A. Corneth_, Aug 11 2021 %E A346971 a(37)-a(40) from _Chai Wah Wu_, Oct 13 2021 %E A346971 a(41)-a(42) from _Chai Wah Wu_, Oct 21 2021