This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346977 #10 Jan 23 2025 08:31:14 %S A346977 1,15,140,1050,6951,42399,239800,1164570,2553551,-54771717, %T A346977 -1384474728,-23286667950,-339924740609,-4554547609233, %U A346977 -56481301888144,-630768487283886,-5665064764515849,-18095553874845909,924820173031946752,35413415495503624986 %N A346977 Expansion of e.g.f. log( 1 + (exp(x) - 1)^5 / 5! ). %F A346977 a(n) = Stirling2(n,5) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * Stirling2(n-k,5) * k * a(k). %F A346977 a(n) ~ -(n-1)! * 2^(1+n) * 5^n * cos(n*arctan((2*arctan(sqrt(10 - 2*sqrt(5))/(1 + sqrt(5) + 2^(7/5)/15^(1/5)))) / log(1 + 3^(1/5)*5^(7/10)/2^(2/5) + 15^(1/5)/2^(2/5) + 2^(6/5)*15^(2/5)))) / (100*arctan(sqrt(10 - 2*sqrt(5))/(1 + sqrt(5) + 2^(7/5)/15^(1/5)))^2 + (5*log(1 + 3^(1/5)*5^(7/10)/2^(2/5) + 15^(1/5)/2^(2/5) + 2^(6/5)*15^(2/5)))^2)^(n/2). - _Vaclav Kotesovec_, Aug 10 2021 %F A346977 a(n) = Sum_{k=1..floor(n/5)} (-1)^(k-1) * (5*k)! * Stirling2(n,5*k)/(k * 120^k). - _Seiichi Manyama_, Jan 23 2025 %t A346977 nmax = 24; CoefficientList[Series[Log[1 + (Exp[x] - 1)^5/5!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 5] & %t A346977 a[n_] := a[n] = StirlingS2[n, 5] - (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 5] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 5, 24}] %Y A346977 Cf. A000481, A327506, A346955, A346974, A346975, A346976. %Y A346977 Cf. A346947, A346955. %K A346977 sign %O A346977 5,2 %A A346977 _Ilya Gutkovskiy_, Aug 09 2021