This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346982 #25 Nov 16 2023 11:50:18 %S A346982 1,1,5,41,477,7201,133685,2945881,75145677,2177900241,70687244965, %T A346982 2539879312521,100086803174077,4291845333310081,198954892070938645, %U A346982 9914294755149067961,528504758009562261677,30010032597449931644721,1808359960001658961070725 %N A346982 Expansion of e.g.f. 1 / (4 - 3 * exp(x))^(1/3). %C A346982 Stirling transform of A007559. %H A346982 Seiichi Manyama, <a href="/A346982/b346982.txt">Table of n, a(n) for n = 0..373</a> %F A346982 a(n) = Sum_{k=0..n} Stirling2(n,k) * A007559(k). %F A346982 a(n) ~ n! / (Gamma(1/3) * 2^(2/3) * n^(2/3) * log(4/3)^(n + 1/3)). - _Vaclav Kotesovec_, Aug 14 2021 %F A346982 From _Peter Bala_, Aug 22 2023: (Start) %F A346982 O.g.f. (conjectural): 1/(1 - x/(1 - 4*x/(1 - 4*x/(1 - 8*x/(1 - 7*x/(1 - 12*x/(1 - ... - (3*n-2)*x/(1 - 4*n*x/(1 - ... ))))))))) - a continued fraction of Stieltjes-type (S-fraction). %F A346982 More generally, it appears that the o.g.f. of the sequence whose e.g.f. is equal to 1/(r+1 - r*exp(s*x))^(m/s) corresponds to the S-fraction 1/(1 - r*m*x/(1 - s*(r+1)*x/(1 - r*(m+s)*x/(1 - 2*s(r+1)*x/(1 - r*(m+2*s)*x/(1 - 3*s(r+1)*x/( 1 - ... ))))))). This is the case r = 3, s = 1, m = 1/3. (End) %F A346982 a(0) = 1; a(n) = Sum_{k=1..n} (3 - 2*k/n) * binomial(n,k) * a(n-k). - _Seiichi Manyama_, Sep 09 2023 %F A346982 a(0) = 1; a(n) = a(n-1) - 4*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - _Seiichi Manyama_, Nov 16 2023 %p A346982 g:= proc(n) option remember; `if`(n<2, 1, (3*n-2)*g(n-1)) end: %p A346982 b:= proc(n, m) option remember; %p A346982 `if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1)) %p A346982 end: %p A346982 a:= n-> b(n, 0): %p A346982 seq(a(n), n=0..18); # _Alois P. Heinz_, Aug 09 2021 %t A346982 nmax = 18; CoefficientList[Series[1/(4 - 3 Exp[x])^(1/3), {x, 0, nmax}], x] Range[0, nmax]! %t A346982 Table[Sum[StirlingS2[n, k] 3^k Pochhammer[1/3, k], {k, 0, n}], {n, 0, 18}] %Y A346982 Cf. A000670, A007559, A305404, A346983, A346984, A346985, A352117, A352118, A352119. %Y A346982 Cf. A032033, A365558. %K A346982 nonn,easy %O A346982 0,3 %A A346982 _Ilya Gutkovskiy_, Aug 09 2021