This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346985 #32 Nov 17 2023 11:20:09 %S A346985 1,1,8,113,2325,62896,2109143,84403033,3924963750,207976793991, %T A346985 12369246804853,815880360117978,59107920881218525,4665585774576259261, %U A346985 398534278371999103888,36627974592437584634573,3603954453161886215458025,377983931878997401821759456,42095013846928585982896180123 %N A346985 Expansion of e.g.f. 1 / (7 - 6 * exp(x))^(1/6). %C A346985 Stirling transform of A008542. %C A346985 In general, for k >= 1, if e.g.f. = 1 / (k + 1 - k*exp(x))^(1/k), then a(n) ~ n! / (Gamma(1/k) * (k+1)^(1/k) * n^(1 - 1/k) * log(1 + 1/k)^(n + 1/k)). - _Vaclav Kotesovec_, Aug 14 2021 %H A346985 Alois P. Heinz, <a href="/A346985/b346985.txt">Table of n, a(n) for n = 0..343</a> %F A346985 a(n) = Sum_{k=0..n} Stirling2(n,k) * A008542(k). %F A346985 a(n) ~ n! / (Gamma(1/6) * 7^(1/6) * n^(5/6) * log(7/6)^(n + 1/6)). - _Vaclav Kotesovec_, Aug 14 2021 %F A346985 For n > 0, a(n) = (1/n)*Sum_{k=0..n-1} binomial(n,k)*(n+5*k)*a(k). - _Tani Akinari_, Aug 22 2023 %F A346985 O.g.f. (conjectural): 1/(1 - x/(1 - 7*x/(1 - 7*x/(1 - 14*x/(1 - 13*x/(1 - 21*x/(1 - ... - (6*n-5)*x/(1 - 7*n*x/(1 - ... ))))))))) - a continued fraction of Stieltjes-type (S-fraction). - _Peter Bala_, Aug 25 2023 %F A346985 a(0) = 1; a(n) = a(n-1) - 7*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - _Seiichi Manyama_, Nov 17 2023 %p A346985 g:= proc(n) option remember; `if`(n<2, 1, (6*n-5)*g(n-1)) end: %p A346985 b:= proc(n, m) option remember; %p A346985 `if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1)) %p A346985 end: %p A346985 a:= n-> b(n, 0): %p A346985 seq(a(n), n=0..18); # _Alois P. Heinz_, Aug 09 2021 %t A346985 nmax = 18; CoefficientList[Series[1/(7 - 6 Exp[x])^(1/6), {x, 0, nmax}], x] Range[0, nmax]! %t A346985 Table[Sum[StirlingS2[n, k] 6^k Pochhammer[1/6, k], {k, 0, n}], {n, 0, 18}] %o A346985 (Maxima) a[n]:=if n=0 then 1 else (1/n)*sum(binomial(n,k)*(n+5*k)*a[k],k,0,n-1); %o A346985 makelist(a[n],n,0,50); /* _Tani Akinari_, Aug 22 2023 */ %Y A346985 Cf. A000670, A008542, A094419, A305404, A346982, A346983, A346984, A352117, A352118, A352119. %Y A346985 Cf. A094419, A354252, A365555, A365556, A365557. %K A346985 nonn %O A346985 0,3 %A A346985 _Ilya Gutkovskiy_, Aug 09 2021