This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347001 #12 May 06 2022 20:33:37 %S A347001 1,0,1,3,14,80,544,4284,38310,383256,4239006,51345690,675770028, %T A347001 9600349824,146396925648,2384700728760,41320373582652,758780222426592, %U A347001 14718569154071964,300706641183038292,6453691377726073128,145154958710291611200,3414131149418742544320 %N A347001 Expansion of e.g.f. exp( log(1 - x)^2 / 2 ). %H A347001 Seiichi Manyama, <a href="/A347001/b347001.txt">Table of n, a(n) for n = 0..448</a> %F A347001 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * |Stirling1(k,2)| * a(n-k). %F A347001 a(n) = Sum_{k=0..floor(n/2)} (2*k)! * |Stirling1(n,2*k)|/(2^k * k!). - _Seiichi Manyama_, May 06 2022 %t A347001 nmax = 22; CoefficientList[Series[Exp[Log[1 - x]^2/2], {x, 0, nmax}], x] Range[0, nmax]! %t A347001 a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Abs[StirlingS1[k, 2]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}] %o A347001 (PARI) a(n) = sum(k=0, n\2, (2*k)!*abs(stirling(n, 2*k, 1))/(2^k*k!)); \\ _Seiichi Manyama_, May 06 2022 %Y A347001 Cf. A000254, A060311, A305306, A346921, A347002, A347003, A347004. %K A347001 nonn %O A347001 0,4 %A A347001 _Ilya Gutkovskiy_, Aug 10 2021