cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347003 Expansion of e.g.f. exp( log(1 - x)^4 / 4! ).

This page as a plain text file.
%I A347003 #13 May 06 2022 20:33:55
%S A347003 1,0,0,0,1,10,85,735,6804,68544,754130,9044750,117773656,1656897528,
%T A347003 25061576176,405667844400,6997383182854,128126051451184,
%U A347003 2481884332498848,50702417505257904,1089371806098805286,24555007848629510700,579348221233739760550,14278529041496660104450
%N A347003 Expansion of e.g.f. exp( log(1 - x)^4 / 4! ).
%H A347003 Seiichi Manyama, <a href="/A347003/b347003.txt">Table of n, a(n) for n = 0..447</a>
%F A347003 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * |Stirling1(k,4)| * a(n-k).
%F A347003 a(n) = Sum_{k=0..floor(n/4)} (4*k)! * |Stirling1(n,4*k)|/(24^k * k!). - _Seiichi Manyama_, May 06 2022
%t A347003 nmax = 23; CoefficientList[Series[Exp[Log[1 - x]^4/4!], {x, 0, nmax}], x] Range[0, nmax]!
%t A347003 a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Abs[StirlingS1[k, 4]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
%o A347003 (PARI) a(n) = sum(k=0, n\4, (4*k)!*abs(stirling(n, 4*k, 1))/(24^k*k!)); \\ _Seiichi Manyama_, May 06 2022
%Y A347003 Cf. A000454, A327505, A346923, A347001, A347002, A347004.
%K A347003 nonn
%O A347003 0,6
%A A347003 _Ilya Gutkovskiy_, Aug 10 2021