A347008 Numbers that can be written in exactly two ways as p*q+p+q where p and q are primes with p < q.
23, 47, 119, 167, 179, 323, 407, 419, 527, 587, 639, 647, 879, 935, 1043, 1103, 1119, 1139, 1215, 1223, 1247, 1271, 1331, 1367, 1403, 1455, 1595, 1599, 1631, 1691, 1775, 1791, 1859, 1895, 1931, 1943, 1959, 1967, 1979, 2099, 2111, 2175, 2183, 2219, 2231, 2435, 2471, 2483, 2495, 2543, 2559, 2603
Offset: 1
Keywords
Examples
a(3) = 119 is a term because 119 = 5*19+5+19 = 3*29+3+29 are the two ways to produce 119 = p*q+p+q with primes p < q.
Links
- Robert Israel, Table of n, a(n) for n = 1..5000
Crossrefs
Cf. A198277.
Programs
-
Maple
N:= 10000: # to produce terms <= N R:= Vector(N): P:= select(isprime, [2,seq(i,i=3..N/3,2)]): for i from 1 to nops(P) do for j from 1 to i-1 do v:=P[i]*P[j]+P[i]+P[j]; if v <= N then R[v]:= R[v]+1 fi od od: select(t -> R[t]=2, [$1..N]);
-
Python
from sympy import primerange from collections import Counter def aupto(limit): primes = list(primerange(2, limit//3+1)) nums = [p*q+p+q for i, p in enumerate(primes) for q in primes[i+1:]] counts = Counter([k for k in nums if k <= limit]) return sorted(k for k in counts if counts[k] == 2) print(aupto(2604)) # Michael S. Branicky, Aug 10 2021