cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347012 E.g.f.: exp(x) / (1 - 4 * x)^(1/4).

This page as a plain text file.
%I A347012 #8 Aug 14 2021 08:47:42
%S A347012 1,2,8,64,800,13376,278272,6914048,199629824,6566164480,242327576576,
%T A347012 9915111636992,445432721932288,21795710738038784,1153805878313615360,
%U A347012 65700181140859518976,4004182878034473254912,260071258357260225609728,17932703649301871611346944
%N A347012 E.g.f.: exp(x) / (1 - 4 * x)^(1/4).
%C A347012 Binomial transform of A007696.
%F A347012 a(n) = Sum_{k=0..n} binomial(n,k) * A007696(k).
%F A347012 a(n) ~ n! * exp(1/4) * 4^n / (Gamma(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Aug 14 2021
%p A347012 g:= proc(n) option remember; `if`(n<2, 1, (4*n-3)*g(n-1)) end:
%p A347012 a:= n-> add(binomial(n, k)*g(k), k=0..n):
%p A347012 seq(a(n), n=0..18);  # _Alois P. Heinz_, Aug 10 2021
%t A347012 nmax = 18; CoefficientList[Series[Exp[x]/(1 - 4 x)^(1/4), {x, 0, nmax}], x] Range[0, nmax]!
%t A347012 Table[Sum[Binomial[n, k] 4^k Pochhammer[1/4, k], {k, 0, n}], {n, 0, 18}]
%t A347012 Table[HypergeometricU[1/4, n + 5/4, 1/4]/Sqrt[2], {n, 0, 18}]
%Y A347012 Cf. A000522, A007696, A056545, A084262, A088991, A346258, A347013, A347014.
%K A347012 nonn
%O A347012 0,2
%A A347012 _Ilya Gutkovskiy_, Aug 10 2021