This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347013 #8 Aug 14 2021 08:47:03 %S A347013 1,2,9,88,1361,28182,726889,22414988,803913441,32867765002, %T A347013 1508608850249,76804271962848,4294870015118641,261673684619584862, %U A347013 17252970318529474089,1223896705010751194068,92946073511938131386561,7523666291578066678172562,646658551118777059833155209 %N A347013 E.g.f.: exp(x) / (1 - 5 * x)^(1/5). %C A347013 Binomial transform of A008548. %F A347013 a(n) = Sum_{k=0..n} binomial(n,k) * A008548(k). %F A347013 a(n) ~ n! * exp(1/5) * 5^n / (Gamma(1/5) * n^(4/5)). - _Vaclav Kotesovec_, Aug 14 2021 %p A347013 g:= proc(n) option remember; `if`(n<2, 1, (5*n-4)*g(n-1)) end: %p A347013 a:= n-> add(binomial(n, k)*g(k), k=0..n): %p A347013 seq(a(n), n=0..18); # _Alois P. Heinz_, Aug 10 2021 %t A347013 nmax = 18; CoefficientList[Series[Exp[x]/(1 - 5 x)^(1/5), {x, 0, nmax}], x] Range[0, nmax]! %t A347013 Table[Sum[Binomial[n, k] 5^k Pochhammer[1/5, k], {k, 0, n}], {n, 0, 18}] %t A347013 Table[HypergeometricU[1/5, n + 6/5, 1/5]/5^(1/5), {n, 0, 18}] %Y A347013 Cf. A000522, A008548, A056546, A084262, A088992, A346258, A347012, A347014. %K A347013 nonn %O A347013 0,2 %A A347013 _Ilya Gutkovskiy_, Aug 10 2021