A347018 The number of unlabeled trees T on n vertices for which maximum multiplicity attained by any matrix whose graph is T implies the simplicity of its other eigenvalues.
1, 1, 1, 2, 3, 5, 8, 14, 24, 43, 74, 134, 238, 433, 778, 1416, 2564, 4676, 8498, 15507, 28246, 51568, 94049, 171734, 313417, 572377, 1044986, 1908527, 3485092, 6365294, 11624741, 21232255, 38778177, 70828006, 129363233, 236282260, 431563697, 788254745, 1439742242
Offset: 1
Keywords
Examples
By degree sequence of the central path: a(1): (0) a(2): (1,1) a(3): (1,2,1) a(4): (1,2,2,1),(1,3,1) a(5): (1,2,2,2,1),(1,2,3,1),(1,4,1) a(6): (1,2,2,2,2,1),(1,2,3,2,1),(1,2,2,3,1),(1,2,4,1),(1,5,1) a(7): (1,2,2,2,2,2,1),(1,2,4,2,1),(1,2,2,4,1),(1,2,2,3,2,1),(1,2,2,2,3,1), (1,2,5,1),(1,3,2,3,1),(1,6,1) a(8): (1,2,2,2,2,2,2,1),(1,3,2,2,2,2,1),(1,2,3,2,2,2,1),(1,2,2,3,2,2,1), (1,4,2,2,2,1),(1,2,4,2,2,1),(1,5,2,2,1),(1,2,5,2,1), (1,6,2,1),(1,3,2,3,2,1),(1,3,2,2,3,1),(1,7,1), (1,4,2,3,1), (1,4,4,1)
References
- Charles R. Johnson and Carlos M. Saiago, Eigenvalues, multiplicities and graphs, Cambridge University Press, 2018.
Links
- Charles R. Johnson, George Tsoukalas, Greyson C. Wesley, and Zachary Zhao, k-NIM trees: Characterization and Enumeration, arXiv:2208.05450 [math.CO], 2022.
Programs
-
Mathematica
A[z_,u_,r_]:=r z^4 (1+u z+(u^2 z^4)/(1-u z^4)); Nsk[z_,u_,r_]:=r z(1/2 (1/(1-1/z A[z,u,r])+(1+1/z A[z,u,r])/(1-1/z^2 A[z^2,u^2,r^2]))-1) alpha[z_,u_,r_]:=r A[z,u,r]+(2Nsk[z^2,u^2,r^2])/(z r) (1+A[z,u,r]/z); beta[z_,u_,r_]:=-1/(r z) (1+A[z,u,r]/z); Nsksym[z_,u_,r_]:=Sum[Product[beta[z^2^i,u^2^i,r^2^i],{i,0,k-1}] alpha[z^2^k,u^2^k,r^2^k],{k,0,6}]; Nskasym[z_,u_,r_]:=Nsk[z,u,r]-Nsksym[z,u,r]; Nsksymodu[z_,u_,r_]:=(Nsksym[z,u,r]-Nsksym[z,-u,r])/2; Nsksymodr[z_,u_,r_]:=(Nsksym[z,u,r]-Nsksym[z,u,-r])/2; Nsksymevuevr[z_,u_,r_]:=(Nsksym[z,u,r]+Nsksym[z,-u,r]+Nsksym[z,u,-r]+Nsksym[z,-u,-r])/4; Nsym[z_]:=Nsksymevuevr[z,1/Sqrt[1-z^2],1/Sqrt[1-z^2]]+(Sqrt[1-z^2]/(1-z))(Nsksymodr[z,1/Sqrt[1-z^2],1/Sqrt[1-z^2]])+(Sqrt[1-z^2]/(1-z))(Nsksymodu[z,1/Sqrt[1-z^2],1/Sqrt[1-z^2]]); Nim[z_]:=(z/(1-z)+Nsym[z])+(Nskasym[z,1/(1-z),1/(1-z)]+1/2(Nsksymevuevr[z,1/(1-z),1/(1-z)]-Nsksymevuevr[z,1/Sqrt[1-z^2],1/Sqrt[1-z^2]])+1/2 (Nsksymodr[z,1/(1-z),1/(1-z)]-Sqrt[1-z^2]/(1-z) Nsksymodr[z,1/Sqrt[1-z^2],1/Sqrt[1-z^2]])+1/2 (Nsksymodu[z,1/(1-z),1/(1-z)]-Sqrt[1-z^2]/(1-z) Nsksymodu[z,1/Sqrt[1-z^2],1/Sqrt[1-z^2]])); TableForm[Table[{i,Coefficient[Series[Nim[z]/.{u -> 1, r -> 1}, {z, 0, 50}], z^i]}, {i,1, 50}]]
Formula
Conjecture: For n>15, a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) + 2*a(n-4) - a(n-5) - 2*a(n-6) + a(n-7) + 3*a(n-8) - 4*a(n-9) - a(n-10) + 2*a(n-11) - 2*a(n-12) + 2*a(n-13) + a(n-14) - a(n-15), with initial terms a(1) through a(15) as given.
If the above conjecture holds, then a(n) has o.g.f. (x - x^2 - 2*x^3 + 2*x^4 - x^5 - x^6 + 2*x^7 - 3*x^9 + 2*x^10 + x^11 - x^12 + 2*x^13 - x^15)/(1 - 2*x - x^2 + 3*x^3 - 2*x^4 + x^5 + 2*x^6 - x^7 - 3*x^8 + 4*x^9 + x^10 - 2*x^11 + 2*x^12 - 2*x^13 - x^14 + x^15).
If the above conjecture holds, then a(n) has an explicit Binet-like formula that can be obtained in terms of the roots of a fifth-degree polynomial.
Comments