This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347019 #20 Sep 07 2023 08:47:41 %S A347019 1,1,8,114,2358,64074,2157828,86714592,4049302404,215458069428, %T A347019 12867377875632,852254389954296,61998666080311800,4914000741835488744, %U A347019 421488717980664846960,38897664480760253351904,3843081247426270376211216,404727487161912602921083536 %N A347019 E.g.f.: 1 / (1 + 6 * log(1 - x))^(1/6). %C A347019 In general, for k >= 1, if e.g.f. = 1 / (1 + k*log(1 - x))^(1/k), then a(n) ~ n! * exp(n/k) / (Gamma(1/k) * k^(1/k) * n^(1 - 1/k) * (exp(1/k) - 1)^(n + 1/k)). - _Vaclav Kotesovec_, Aug 14 2021 %H A347019 Seiichi Manyama, <a href="/A347019/b347019.txt">Table of n, a(n) for n = 0..343</a> %F A347019 a(n) = Sum_{k=0..n} |Stirling1(n,k)| * A008542(k). %F A347019 a(n) ~ n! * exp(n/6) / (Gamma(1/6) * 6^(1/6) * n^(5/6) * (exp(1/6) - 1)^(n + 1/6)). - _Vaclav Kotesovec_, Aug 14 2021 %t A347019 nmax = 17; CoefficientList[Series[1/(1 + 6 Log[1 - x])^(1/6), {x, 0, nmax}], x] Range[0, nmax]! %t A347019 Table[Sum[Abs[StirlingS1[n, k]] 6^k Pochhammer[1/6, k], {k, 0, n}], {n, 0, 17}] %Y A347019 Cf. A007840, A008542, A346978, A346985, A346987, A347015, A347016. %K A347019 nonn %O A347019 0,3 %A A347019 _Ilya Gutkovskiy_, Aug 11 2021