cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347020 Expansion of e.g.f. 1 / (1 - 3 * log(1 + x))^(1/3).

This page as a plain text file.
%I A347020 #11 Sep 11 2023 09:02:55
%S A347020 1,1,3,18,150,1644,22116,353856,6554376,138001896,3254445144,
%T A347020 84979363248,2433814616592,75858381808416,2556180134677152,
%U A347020 92597465283789312,3588434497019272320,148134619713440384640,6489652665043455707520,300712023388466713739520
%N A347020 Expansion of e.g.f. 1 / (1 - 3 * log(1 + x))^(1/3).
%F A347020 a(n) = Sum_{k=0..n} Stirling1(n,k) * A007559(k).
%F A347020 a(n) ~ n! * exp(1/9) / (Gamma(1/3) * 3^(1/3) * n^(2/3) * (exp(1/3) - 1)^(n + 1/3)). - _Vaclav Kotesovec_, Aug 14 2021
%F A347020 a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * (3 - 2*k/n) * (k-1)! * binomial(n,k) * a(n-k). - _Seiichi Manyama_, Sep 11 2023
%t A347020 nmax = 19; CoefficientList[Series[1/(1 - 3 Log[1 + x])^(1/3), {x, 0, nmax}], x] Range[0, nmax]!
%t A347020 Table[Sum[StirlingS1[n, k] 3^k Pochhammer[1/3, k], {k, 0, n}], {n, 0, 19}]
%Y A347020 Cf. A006252, A007559, A320343, A335531, A346982, A347015, A347021, A347022, A347023.
%K A347020 nonn
%O A347020 0,3
%A A347020 _Ilya Gutkovskiy_, Aug 11 2021