cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347021 Expansion of e.g.f. 1 / (1 - 4 * log(1 + x))^(1/4).

This page as a plain text file.
%I A347021 #11 Sep 11 2023 09:02:52
%S A347021 1,1,4,32,364,5444,100520,2210760,56406240,1637877600,53327583360,
%T A347021 1924096475520,76198487927040,3285955396558080,153273199794071040,
%U A347021 7689131281851770880,412809183978447306240,23616192920003184176640,1434201753814306170808320
%N A347021 Expansion of e.g.f. 1 / (1 - 4 * log(1 + x))^(1/4).
%F A347021 a(n) = Sum_{k=0..n} Stirling1(n,k) * A007696(k).
%F A347021 a(n) ~ n! * exp(1/16) / (Gamma(1/4) * 2^(1/2) * n^(3/4) * (exp(1/4) - 1)^(n + 1/4)). - _Vaclav Kotesovec_, Aug 14 2021
%F A347021 a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * (4 - 3*k/n) * (k-1)! * binomial(n,k) * a(n-k). - _Seiichi Manyama_, Sep 11 2023
%t A347021 nmax = 18; CoefficientList[Series[1/(1 - 4 Log[1 + x])^(1/4), {x, 0, nmax}], x] Range[0, nmax]!
%t A347021 Table[Sum[StirlingS1[n, k] 4^k Pochhammer[1/4, k], {k, 0, n}], {n, 0, 18}]
%Y A347021 Cf. A006252, A007696, A320343, A346983, A347016, A347020, A347022, A347023.
%K A347021 nonn
%O A347021 0,3
%A A347021 _Ilya Gutkovskiy_, Aug 11 2021