This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347028 #8 Apr 29 2025 21:14:06 %S A347028 1,-1,0,-2,1,-3,1,-4,4,-6,2,-7,8,-8,5,-13,13,-14,9,-15,19,-21,12,-22, %T A347028 32,-26,18,-36,33,-37,31,-38,57,-48,32,-56,66,-57,44,-74,83,-75,65, %U A347028 -76,100,-102,68,-103,140,-108,94,-136,140,-137,119,-149,193,-174,125,-175,228,-176,161,-224,256 %N A347028 a(1) = 1; a(n+1) = -Sum_{k=1..n} a(floor(n/k)). %F A347028 G.f. A(x) satisfies: A(x) = x - (x/(1 - x)) * Sum_{k>=1} (1 - x^k) * A(x^k). %t A347028 a[1] = 1; a[n_] := a[n] = -Sum[a[Floor[(n - 1)/k]], {k, 1, n - 1}]; Table[a[n], {n, 1, 65}] %t A347028 nmax = 65; A[_] = 0; Do[A[x_] = x - (x/(1 - x)) Sum[(1 - x^k) A[x^k], {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest %o A347028 (Python) %o A347028 from functools import lru_cache %o A347028 @lru_cache(maxsize=None) %o A347028 def A347028(n): %o A347028 if n == 1: %o A347028 return 1 %o A347028 c, j, k1 = n, 1, n-1 %o A347028 while k1 > 1: %o A347028 j2 = (n-1)//k1 + 1 %o A347028 c += (j2-j)*A347028(k1) %o A347028 j, k1 = j2, (n-1)//j2 %o A347028 return j-c # _Chai Wah Wu_, Apr 29 2025 %Y A347028 Cf. A078346, A309288, A328967. %K A347028 sign %O A347028 1,4 %A A347028 _Ilya Gutkovskiy_, Aug 11 2021