This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347034 #61 Jan 12 2023 06:32:16 %S A347034 0,0,2,0,3,21,0,4,40,232,0,5,65,505,3005,0,6,96,936,7056,45936,0,7, %T A347034 133,1561,14287,112609,818503,0,8,176,2416,26048,241984,2056832, %U A347034 16736896,0,9,225,3537,43929,470961,4601529,42683841,387057609,0,10,280,4960,69760,848800 %N A347034 Triangle read by columns: T(n,k) is the number of functions from an n-element set to a k-element set that are not one-to-one, k>=n>=1. %C A347034 The formula for this sequence is Theorem 2.2(iv) of the author's paper, p. 131 (see the link). %H A347034 Mohammad K. Azarian, <a href="https://doi.org/10.12988/imf.2022.912321">Remarks and Conjectures Regarding Combinatorics of Discrete Partial Functions</a>, Int'l Math. Forum (2022) Vol. 17, No. 3, 129-141. %F A347034 T(n,k) = k^n - k!/(k - n)!, k>=n. %F A347034 T(n,n) = A036679(n). %e A347034 For T(2,3): the number of functions is 3^2 and the number of one-to-one functions is 6, so 3^2 - 6 = 3 and thus T(2,3) = 3. %e A347034 Triangle T(n,k) begins: %e A347034 k=1 k=2 k=3 k=4 k=5 k=6 %e A347034 n=1: 0 0 0 0 0 0 %e A347034 n=2: 2 3 4 5 6 %e A347034 n=3: 21 40 65 96 %e A347034 n=4: 232 505 936 %e A347034 n=5: 3005 7056 %e A347034 n=6: 45936 %p A347034 A347034 := proc(n,k) %p A347034 k^n-k!/(k-n)! ; %p A347034 end proc: %p A347034 seq(seq(A347034(n,k),n=1..k),k=1..12) ; # _R. J. Mathar_, Jan 12 2023 %t A347034 Table[k^n - k!/(k - n)!, {k, 12}, {n, k}] // Flatten %o A347034 (PARI) T(n,k) = k^n - k!/(k - n)!; %o A347034 row(k) = vector(k, i, T(i, k)); \\ _Michel Marcus_, Oct 01 2021 %Y A347034 Cf. A000312, A002416, A036679, A068424, A089072, A101030, A199656, A344110, A344112, A344113, A344114, A344115, A344116. %K A347034 easy,nonn,tabl %O A347034 1,3 %A A347034 _Mohammad K. Azarian_, Aug 28 2021