This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347047 #22 Sep 15 2021 00:28:00 %S A347047 6,10,14,21,26,34,38,46,58,62,74,82,86,94,106,118,122,134,142,146,158, %T A347047 166,178,194,202,206,214,218,226,254,262,274,278,298,302,314,326,334, %U A347047 346,358,362,382,386,394,398,422,446,454,458,466,478,482,502,514,526 %N A347047 Smallest squarefree semiprime whose prime indices sum to n. %C A347047 Compared to A001747, we have 21 instead of 22 and lack 2 and 4. %C A347047 Compared to A100484 (shifted) we have 21 instead of 22 and lack 4. %C A347047 Compared to A161344, we have 21 instead of 22 and lack 4 and 8. %C A347047 Compared to A339114, we have 11 instead of 9 and lack 4. %C A347047 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A347047 A squarefree semiprime (A006881) is a product of any two distinct prime numbers. %e A347047 The initial terms and their prime indices: %e A347047 6: {1,2} %e A347047 10: {1,3} %e A347047 14: {1,4} %e A347047 21: {2,4} %e A347047 26: {1,6} %e A347047 34: {1,7} %e A347047 38: {1,8} %e A347047 46: {1,9} %t A347047 Table[Min@@Select[Table[Times@@Prime/@y,{y,IntegerPartitions[n,{2}]}],SquareFreeQ],{n,3,50}] %o A347047 (Python) %o A347047 from sympy import prime, sieve %o A347047 def a(n): %o A347047 p = [0] + list(sieve.primerange(1, prime(n)+1)) %o A347047 return min(p[i]*p[n-i] for i in range(1, (n+1)//2)) %o A347047 print([a(n) for n in range(3, 58)]) # _Michael S. Branicky_, Sep 05 2021 %Y A347047 The opposite version (greatest instead of smallest) is A332765. %Y A347047 These are the minima of rows of A338905. %Y A347047 The nonsquarefree version is A339114 (opposite: A339115). %Y A347047 A001358 lists semiprimes (squarefree: A006881). %Y A347047 A024697 adds up semiprimes by weight (squarefree: A025129). %Y A347047 A056239 adds up prime indices, row sums of A112798. %Y A347047 A246868 gives the greatest squarefree number whose prime indices sum to n. %Y A347047 A320655 counts factorizations into semiprimes (squarefree: A320656). %Y A347047 A338898, A338912, A338913 give the prime indices of semiprimes. %Y A347047 A338899, A270650, A270652 give the prime indices of squarefree semiprimes. %Y A347047 A339116 groups squarefree semiprimes by greater factor, sums A339194. %Y A347047 A339362 adds up prime indices of squarefree semiprimes. %Y A347047 Cf. A001221, A087112, A089994, A098350, A176504, A338900, A338901, A338904, A338907/A338908, A339005, A339191. %K A347047 nonn %O A347047 3,1 %A A347047 _Gus Wiseman_, Aug 22 2021