This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347048 #18 Jul 28 2024 10:05:23 %S A347048 1,0,0,1,0,0,0,1,1,0,0,1,0,0,0,3,0,1,0,1,0,0,0,1,1,0,1,1,0,0,0,4,0,0, %T A347048 0,7,0,0,0,1,0,0,0,1,1,0,0,6,1,1,0,1,0,1,0,1,0,0,0,1,0,0,1,11,0,0,0,1, %U A347048 0,0,0,11,0,0,1,1,0,0,0,6,3,0,0,1,0,0,0,1,0,1,0,1,0,0,0,8,0,1,1,7,0,0,0,1,0 %N A347048 Number of even-length ordered factorizations of n with integer alternating product. %C A347048 An ordered factorization of n is a sequence of positive integers > 1 with product n. %C A347048 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). %H A347048 Antti Karttunen, <a href="/A347048/b347048.txt">Table of n, a(n) for n = 1..65537</a> %H A347048 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a> %F A347048 a(n) = A347463(n) - A347049(n). %e A347048 The a(n) ordered factorizations for n = 16, 32, 36, 48, 64, 96: %e A347048 4*4 8*4 6*6 12*4 8*8 24*4 %e A347048 8*2 16*2 12*3 24*2 16*4 48*2 %e A347048 2*2*2*2 2*2*4*2 18*2 2*2*6*2 32*2 3*2*8*2 %e A347048 4*2*2*2 2*2*3*3 3*2*4*2 2*2*4*4 4*2*6*2 %e A347048 2*3*3*2 4*2*3*2 2*2*8*2 6*2*4*2 %e A347048 3*2*2*3 6*2*2*2 2*4*4*2 8*2*3*2 %e A347048 3*3*2*2 4*2*2*4 12*2*2*2 %e A347048 4*2*4*2 2*2*12*2 %e A347048 4*4*2*2 %e A347048 8*2*2*2 %e A347048 2*2*2*2*2*2 %t A347048 ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]]; %t A347048 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; %t A347048 Table[Length[Select[ordfacs[n],EvenQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,100}] %o A347048 (PARI) A347048(n, m=n, ap=1, e=0) = if(1==n,!(e%2) && 1==numerator(ap), sumdiv(n, d, if(d>1, A347048(n/d, d, ap * d^((-1)^e), 1-e)))); \\ _Antti Karttunen_, Jul 28 2024 %Y A347048 Positions of 0's are A005117 \ {2}. %Y A347048 The restriction to powers of 2 is A027306. %Y A347048 Heinz numbers of partitions of this type are A028260 /\ A347457. %Y A347048 Positions of 3's appear to be A030514. %Y A347048 Positions of 1's are 1 and A082293. %Y A347048 Allowing non-integer alternating product gives A174725, unordered A339846. %Y A347048 The odd-length version is A347049. %Y A347048 The unordered version is A347438, reverse A347439. %Y A347048 Allowing any length gives A347463. %Y A347048 Partitions of this type are counted by A347704, reverse A035363. %Y A347048 A001055 counts factorizations (strict A045778, ordered A074206). %Y A347048 A103919 counts partitions by sum and alternating sum (reverse: A344612). %Y A347048 A119620 counts partitions with alternating product 1, ranked by A028982. %Y A347048 A273013 counts ordered factorizations of n^2 with alternating product 1. %Y A347048 A339890 counts odd-length factorizations, ordered A174726. %Y A347048 A347050 = factorizations with alternating permutation, complement A347706. %Y A347048 A347437 = factorizations with integer alternating product, reverse A347442. %Y A347048 A347446 = partitions with integer alternating product, reverse A347445. %Y A347048 A347460 counts possible alternating products of factorizations. %Y A347048 Cf. A025047, A038548, A116406, A138364, A347440, A347441, A347454, A347456, A347458, A347459, A347464. %K A347048 nonn %O A347048 1,16 %A A347048 _Gus Wiseman_, Oct 10 2021 %E A347048 Data section extended up to a(105) by _Antti Karttunen_, Jul 28 2024