cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347050 Number of factorizations of n that are a twin (x*x) or have an alternating permutation.

This page as a plain text file.
%I A347050 #12 Nov 08 2021 04:24:26
%S A347050 1,1,1,2,1,2,1,2,2,2,1,4,1,2,2,4,1,4,1,4,2,2,1,6,2,2,2,4,1,5,1,5,2,2,
%T A347050 2,9,1,2,2,6,1,5,1,4,4,2,1,10,2,4,2,4,1,6,2,6,2,2,1,11,1,2,4,7,2,5,1,
%U A347050 4,2,5,1,15,1,2,4,4,2,5,1,10,4,2,1,11,2
%N A347050 Number of factorizations of n that are a twin (x*x) or have an alternating permutation.
%C A347050 First differs from A348383 at a(216) = 27, A348383(216) = 28.
%C A347050 A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
%C A347050 These permutations are ordered factorizations of n with no adjacent triples (..., x, y, z, ...) where x <= y <= z or x >= y >= z.
%C A347050 The version without twins for n > 0 is a(n) + 1 if n is a perfect square; otherwise a(n).
%F A347050 For n > 1, a(n) = A335434(n) + A010052(n).
%e A347050 The factorizations for n = 4, 12, 24, 30, 36, 48, 60, 64, 72:
%e A347050   4    12     24     30     36       48       60       64       72
%e A347050   2*2  2*6    3*8    5*6    4*9      6*8      2*30     8*8      8*9
%e A347050        3*4    4*6    2*15   6*6      2*24     3*20     2*32     2*36
%e A347050        2*2*3  2*12   3*10   2*18     3*16     4*15     4*16     3*24
%e A347050               2*2*6  2*3*5  3*12     4*12     5*12     2*4*8    4*18
%e A347050               2*3*4         2*2*9    2*3*8    6*10     2*2*16   6*12
%e A347050                             2*3*6    2*4*6    2*5*6    2*2*4*4  2*4*9
%e A347050                             3*3*4    3*4*4    3*4*5             2*6*6
%e A347050                             2*2*3*3  2*2*12   2*2*15            3*3*8
%e A347050                                      2*2*3*4  2*3*10            3*4*6
%e A347050                                               2*2*3*5           2*2*18
%e A347050                                                                 2*3*12
%e A347050                                                                 2*2*3*6
%e A347050                                                                 2*3*3*4
%e A347050                                                                 2*2*2*3*3
%e A347050 The a(270) = 19 factorizations:
%e A347050   (2*3*5*9)   (5*6*9)   (3*90)   (270)
%e A347050   (3*3*5*6)   (2*3*45)  (5*54)
%e A347050   (2*3*3*15)  (2*5*27)  (6*45)
%e A347050               (2*9*15)  (9*30)
%e A347050               (3*3*30)  (10*27)
%e A347050               (3*5*18)  (15*18)
%e A347050               (3*6*15)  (2*135)
%e A347050               (3*9*10)
%e A347050 Note that (2*3*3*3*5) is separable but has no alternating permutations.
%t A347050 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t A347050 Table[Length[Select[facs[n],Function[f,Select[Permutations[f],!MatchQ[#,{___,x_,y_,z_,___}/;x<=y<=z||x>=y>=z]&]!={}]]],{n,100}]
%Y A347050 Partitions not of this type are counted by A344654, ranked by A344653.
%Y A347050 Partitions of this type are counted by A344740, ranked by A344742.
%Y A347050 The complement is counted by A347706, without twins A348380.
%Y A347050 The case without twins is A348379.
%Y A347050 Dominates A348383, the separable case.
%Y A347050 A001055 counts factorizations, strict A045778, ordered A074206.
%Y A347050 A001250 counts alternating permutations.
%Y A347050 A008480 counts permutations of prime indices, strict A335489.
%Y A347050 A025047 counts alternating or wiggly compositions, ranked by A345167.
%Y A347050 A056239 adds up prime indices, row sums of A112798.
%Y A347050 A325534 counts separable partitions, ranked by A335433.
%Y A347050 A325535 counts inseparable partitions, ranked by A335448.
%Y A347050 A335452 counts anti-run permutations of prime indices, complement A336107.
%Y A347050 A339846 counts even-length factorizations.
%Y A347050 A339890 counts odd-length factorizations.
%Y A347050 Cf. A038548, A049774, A102726, A119620, A128761, A344614, A347437, A347438, A347458, A348381.
%K A347050 nonn
%O A347050 1,4
%A A347050 _Gus Wiseman_, Oct 15 2021