cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347054 Number of domino tilings of a 32 X n rectangle.

Original entry on oeis.org

1, 1, 3524578, 1117014753, 170220478472105, 224916047725262248, 12348080425980866090537, 30648981125778378496845537, 1010618564986361239515088848178, 3596059736380751648485086101179655, 87171995375835553001398855677616476448, 391978133958466896956216157693001644153072
Offset: 0

Views

Author

A. M. Magomedov and Serge Lawrencenko, Aug 14 2021

Keywords

Comments

It is known that the number of domino tilings of an m X n rectangle is equal to the number of perfect matchings in the m X n grid graph.

References

  • A. M. Magomedov, T. A. Magomedov, S. A. Lawrencenko, Mutually-recursive formulas for enumerating partitions of the rectangle, [in Russian, English summary], Prikl. Diskretn. Mat., 46 (2019), 108-121. DOI: 10.17223/20710410/46/9
  • A. M. Magomedov and S. A. Lavrenchenko, Computational aspects of the partition enumeration problem, [in Russian, English summary], Dagestan Electronic Mathematical Reports, 14 (2020), 1-21. DOI: 10.31029/demr.14.1

Crossrefs

Column n=32 of A187596.

Programs

  • Mathematica
    Do[ P=1;
    Do[P=P*4*(Cos[Pi*i/(n+1)]^2+Cos[Pi*j/33]^2), {i,1,n/2}, {j,1,16}];
    Print["n=", n ,":", Round[P]], {n,1,11000}]

Formula

a(n) = Product_{j=1..16} (Product_{k=1..floor(n/2)}(4*(cos(j*Pi/33))^2+ 4*(cos(k*Pi/(n+1)))^2)) (special case of the double product formula in A099390).