This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347056 #13 May 29 2022 21:43:14 %S A347056 1,3,4,6,16,10,10,40,50,20,15,80,150,120,35,21,140,350,420,245,56,28, %T A347056 224,700,1120,980,448,84,36,336,1260,2520,2940,2016,756,120,45,480, %U A347056 2100,5040,7350,6720,3780,1200,165,55,660,3300,9240,16170,18480,13860,6600,1815,220 %N A347056 Triangle read by rows: T(n,k) = (n+1)*(n+2)*(k+3)*binomial(n,k)/6, 0 <= k <= n. %C A347056 This triangle is T[3] in the sequence (T[p]) of triangles defined by: T[p](n,k) = (k+p)*(n+p-1)!/(k!*(n-k)!*p!) and T[0](0,0)=1. %C A347056 Riordan triangle (1/(1-x)^3, x/(1-x)) with column k scaled with A000292(k+1) = binomial(k+3, 3), for k >= 0. - _Wolfdieter Lang_, Sep 30 2021 %H A347056 Luc Rousseau, <a href="/A347056/a347056.svg">Illustration: the A347056 triangle in a sequence of contiguous triangles.</a> %F A347056 T(n,k) = (n+1)*(n+2)*(k+3)*binomial(n,k)/6. %F A347056 G.f. column k: x^k*binomial(k+3, 3)/(1 - x)^(k+3), for k >= 0. - _Wolfdieter Lang_, Sep 30 2021 %e A347056 T(6,2) = (6+1)*(6+2)*(2+3)*binomial(6,2)/6 = 7*8*5*15/6 = 700. %e A347056 The triangle T begins: %e A347056 n \ k 0 1 2 3 4 5 6 7 8 9 10 ... %e A347056 0: 1 %e A347056 1: 3 4 %e A347056 2: 6 16 10 %e A347056 3: 10 40 50 20 %e A347056 4: 15 80 150 120 35 %e A347056 5: 21 140 350 420 245 56 %e A347056 6: 28 224 700 1120 980 448 84 %e A347056 7: 36 336 1260 2520 2940 2016 756 120 %e A347056 8: 45 480 2100 5040 7350 6720 3780 1200 165 %e A347056 9: 55 660 3300 9240 16170 18480 13860 6600 1815 220 %e A347056 10: 66 880 4950 15840 32340 44352 41580 26400 10890 2640 286 %e A347056 ... - _Wolfdieter Lang_, Sep 30 2021 %o A347056 (PARI) %o A347056 T(p,n,k)=if(n==0&&p==0,1,((k+p)*(n+p-1)!)/(k!*(n-k)!*p!)) %o A347056 for(n=0,9,for(k=0,n,print1(T(3,n,k),", "))) %Y A347056 Cf. A097805 (p=0), A103406 (p=1), A124932 (essentially p=2). %Y A347056 From _Wolfdieter Lang_, Sep 30 2021: (Start) %Y A347056 Columns (with leading zeros): A000217(n+1), 4*A000294, 10*A000332(n+2), 20*A000389(n+2), 35*A000579(n+2), 56*A000580(n+2), 84*A000581(n+2), 120*A000582(n+2), ... %Y A347056 Diagonals: A000292(k+1), A004320(k+1), 2*A006411(k+1), 10*A040977, ... (End) %K A347056 nonn,tabl,easy %O A347056 0,2 %A A347056 _Luc Rousseau_, Aug 14 2021