cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347060 Total number of 1's in the binary expansion of parts in all partitions of n into distinct parts.

This page as a plain text file.
%I A347060 #15 Aug 15 2021 18:14:56
%S A347060 0,1,1,4,4,7,11,15,20,28,39,48,64,80,104,134,167,203,257,311,381,470,
%T A347060 566,680,820,981,1168,1394,1650,1946,2300,2700,3161,3705,4315,5026,
%U A347060 5845,6769,7827,9049,10424,11992,13784,15801,18088,20702,23620,26922,30665
%N A347060 Total number of 1's in the binary expansion of parts in all partitions of n into distinct parts.
%H A347060 Alois P. Heinz, <a href="/A347060/b347060.txt">Table of n, a(n) for n = 0..10000</a>
%e A347060 a(5) = 7 counts the 1's in [101], [100, 1], [11, 10].
%p A347060 h:= proc(n) option remember; add(i, i=Bits[Split](n)) end:
%p A347060 b:= proc(n, i) option remember; `if`(n=0, [1, 0],
%p A347060       `if`(n>i*(i+1)/2, 0, b(n, i-1)+(p-> p+
%p A347060        [0, p[1]*h(i)])(b(n-i, min(n-i, i-1)))))
%p A347060     end:
%p A347060 a:= n-> b(n$2)[2]:
%p A347060 seq(a(n), n=0..60);
%Y A347060 Cf. A000009, A000120, A066189, A066624, A318756, A319140.
%K A347060 nonn,base
%O A347060 0,4
%A A347060 _Alois P. Heinz_, Aug 14 2021