A347065 Rectangular array (T(n,k)), by antidiagonals: T(n,k) = position of k in the ordering of {h/r^m, r = (1+sqrt(5))/2, h >= 1, 0 <= m <= n}.
1, 3, 1, 4, 3, 1, 6, 5, 3, 1, 8, 7, 5, 3, 1, 9, 9, 7, 5, 3, 1, 11, 11, 10, 7, 5, 3, 1, 12, 13, 12, 10, 7, 5, 3, 1, 14, 15, 14, 12, 10, 7, 5, 3, 1, 16, 17, 16, 15, 12, 10, 7, 5, 3, 1, 17, 19, 19, 17, 15, 12, 10, 7, 5, 3, 1, 19, 21, 21, 20, 17, 15, 12, 10, 7
Offset: 1
Examples
Corner: 1 3 4 6 8 9 11 12 14 16 17 19 21 1 3 5 7 9 11 13 15 17 19 21 23 25 1 3 5 7 10 12 14 16 19 21 23 25 28 1 3 5 7 10 12 15 17 20 22 24 26 29 1 3 5 7 10 12 15 17 20 22 24 27 30 1 3 5 7 10 12 15 17 20 22 24 27 30 1 3 5 7 10 12 15 17 20 22 24 27 30
Crossrefs
Programs
-
Mathematica
z = 100; r = N[(1 + Sqrt[5])/2]; s[m_] := Range[z] r^m; t[0] = s[0]; t[n_] := Sort[Union[s[n], t[n - 1]]] row[n_] := Flatten[Table[Position[t[n], N[k]], {k, 1, z}]] TableForm[Table[row[n], {n, 1, 10}]] (* A347065, array *) w[n_, k_] := row[n][[k]]; Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A347065, sequence *)