cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347068 Rectangular array (T(n,k)), by downward antidiagonals: T(n,k) = position of k in the ordering of {h*r^m, r = 1/(golden ratio), h >= 1, 0 <= m <= n}.

This page as a plain text file.
%I A347068 #15 Oct 28 2021 06:31:36
%S A347068 2,5,4,7,10,8,10,14,18,14,13,20,26,31,25,15,26,36,46,53,42,18,30,47,
%T A347068 63,79,88,71,20,36,55,81,107,132,146,117,23,40,65,96,136,178,219,239,
%U A347068 193,26,46,73,112,162,225,294,359,391,315,28,52,84,127,189,269
%N A347068 Rectangular array (T(n,k)), by downward antidiagonals: T(n,k) = position of k in the ordering of {h*r^m, r = 1/(golden ratio), h >= 1, 0 <= m <= n}.
%C A347068 Row 1: A001950 (upper Wythoff sequence);
%C A347068 row 2: A283234;
%C A347068 row 3: A190508;
%C A347068 col 1: A020956.
%e A347068 Corner:
%e A347068     2,   5,   7,  10,  13,  15,  18,  20,  23, ...
%e A347068     4,  10,  14,  20,  26,  30,  36,  40,  46, ...
%e A347068     8,  18,  26,  36,  47,  55,  65,  73,  84, ...
%e A347068    14,  31,  46,  63,  81,  96, 112, 127, 145, ...
%e A347068    25,  53,  79, 107, 136, 162, 189, 215, 244, ...
%e A347068    42,  88, 132, 178, 225, 269, 314, 358, 405, ...
%e A347068    71, 146, 219, 294, 370, 443, 517, 590, 666, ...
%e A347068    ...
%t A347068 z = 1000; r = N[(-1+Sqrt[5])/2];
%t A347068 s[m_] := Range[z] r^m; t[0] = s[0];
%t A347068 t[n_] := Sort[Union[s[n], t[n - 1]]]
%t A347068 row[n_] := Flatten[Table[Position[t[n], N[k]], {k, 1, z}]]
%t A347068 TableForm[Table[row[n], {n, 1, 10}]] (* A347068, array *)
%t A347068 w[n_, k_] := row[n][[k]];
%t A347068 Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A347068, sequence *)
%Y A347068 Cf. A001950, A020956, A283234, A190508, A347065, A347066, A347067, A347069.
%K A347068 nonn,tabl
%O A347068 1,1
%A A347068 _Clark Kimberling_, Sep 02 2021