This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347071 #10 Jun 11 2022 11:46:12 %S A347071 1,1,2,5,20,95,580,3999,32272,288783,2898300,31807679,382253808, %T A347071 4964649079,69546528636,1042802172359,16688865840384,283667092507743, %U A347071 5106507590277564,97017597229232975,1940428937186428720,40747978365579886375,896469940257304900700 %N A347071 E.g.f.: exp(x) * (sec(x) - tan(x)) / (1 - x). %C A347071 Inverse boustrophedon transform of A000522. %C A347071 Binomial transform of A337445. %H A347071 <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a> %F A347071 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A000522(k) * A000111(n-k). %F A347071 a(n) = Sum_{k=0..n} binomial(n,k) * A337445(k). %F A347071 a(n) ~ n! * exp(1)*(1 - sin(1))/cos(1). - _Vaclav Kotesovec_, Aug 23 2021 %t A347071 nmax = 22; CoefficientList[Series[Exp[x] (Sec[x] - Tan[x])/(1 - x), {x, 0, nmax}], x] Range[0, nmax]! %t A347071 t[n_, 0] := n! Sum[1/k!, {k, 0, n}]; t[n_, k_] := t[n, k] = t[n, k - 1] - t[n - 1, n - k]; a[n_] := t[n, n]; Table[a[n], {n, 0, 22}] %o A347071 (Python) %o A347071 from itertools import count, islice, accumulate %o A347071 from operator import sub %o A347071 def A347071_gen(): # generator of terms %o A347071 blist, m = tuple(), 1 %o A347071 for i in count(1): %o A347071 yield (blist := tuple(accumulate(reversed(blist),func=sub,initial=m)))[-1] %o A347071 m = m*i + 1 %o A347071 A347071_list = list(islice(A347071_gen(),30)) # _Chai Wah Wu_, Jun 11 2022 %Y A347071 Cf. A000111, A000522, A307593, A337445. %K A347071 nonn %O A347071 0,3 %A A347071 _Ilya Gutkovskiy_, Aug 15 2021