This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347088 #13 Jul 29 2023 06:51:53 %S A347088 0,0,0,1,0,0,0,2,2,0,0,2,0,0,0,5,0,4,0,2,0,0,0,4,4,0,4,2,0,0,0,8,0,0, %T A347088 0,11,0,0,0,4,0,0,0,2,4,0,0,10,6,8,0,2,0,8,0,4,0,0,0,4,0,0,4,15,0,0,0, %U A347088 2,0,0,0,18,0,0,8,2,0,0,0,10,12,0,0,4,0,0,0,4,0,8,0,2,0,0,0,16,0,12,4,19,0,0,0,4,0 %N A347088 a(n) = A055155(n) - d(n), where A055155(n) = Sum_{d|n} gcd(d, n/d) and d(n) gives the number of divisors of n. %H A347088 Antti Karttunen, <a href="/A347088/b347088.txt">Table of n, a(n) for n = 1..16384</a> %F A347088 a(n) = A055155(n) - A000005(n). %o A347088 (PARI) %o A347088 A055155(n) = sumdiv(n, d, gcd(d, n/d)); \\ From A055155 %o A347088 A347088(n) = (A055155(n)-numdiv(n)); %o A347088 (Python) %o A347088 from sympy import gcd, divisors, divisor_count %o A347088 def A347088(n): return sum(gcd(d,n//d) for d in divisors(n,generator=True)) - divisor_count(n) # _Chai Wah Wu_, Aug 19 2021 %Y A347088 Cf. A000005, A005117 (positions of zeros), A055155, A347089. %K A347088 nonn %O A347088 1,8 %A A347088 _Antti Karttunen_, Aug 17 2021