This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347089 #11 Aug 19 2021 15:33:17 %S A347089 1,2,2,1,2,4,2,2,1,4,2,2,2,4,4,5,2,2,2,2,4,4,2,4,1,4,4,2,2,8,2,2,4,4, %T A347089 4,1,2,4,4,4,2,8,2,2,2,4,2,10,3,2,4,2,2,8,4,4,4,4,2,4,2,4,2,1,4,8,2,2, %U A347089 4,8,2,6,2,4,2,2,4,8,2,10,1,4,2,4,4,4,4,4,2,4,4,2,4,4,4,4,2,6,2,1,2,8,2,4,8 %N A347089 a(n) = gcd(A055155(n), d(n)), where A055155(n) = Sum_{d|n} gcd(d, n/d) and d(n) gives the number of divisors of n. %H A347089 Antti Karttunen, <a href="/A347089/b347089.txt">Table of n, a(n) for n = 1..16384</a> %F A347089 a(n) = gcd(A000005(n), A055155(n)). %F A347089 a(n) = gcd(A000005(n), A347088(n)) = gcd(A055155(n), A347088(n)). %o A347089 (PARI) %o A347089 A055155(n) = sumdiv(n, d, gcd(d, n/d)); \\ From A055155 %o A347089 A347089(n) = gcd(A055155(n),numdiv(n)); %o A347089 (Python) %o A347089 from sympy import gcd, divisors, divisor_count %o A347089 def A347089(n): return gcd(divisor_count(n),sum(gcd(d,n//d) for d in divisors(n,generator=True))) # _Chai Wah Wu_, Aug 19 2021 %Y A347089 Cf. A000005, A055155, A347088. %K A347089 nonn %O A347089 1,2 %A A347089 _Antti Karttunen_, Aug 17 2021