cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347093 Sum of A322577 (convolution of Dedekind psi with Euler phi) and its Dirichlet inverse.

This page as a plain text file.
%I A347093 #14 Aug 30 2021 21:51:42
%S A347093 2,0,0,16,0,48,0,24,36,80,0,36,0,112,120,73,0,64,0,60,168,176,0,192,
%T A347093 100,208,96,84,0,0,0,156,264,272,280,336,0,304,312,320,0,0,0,132,160,
%U A347093 368,0,378,196,192,408,156,0,432,440,448,456,464,0,960,0,496,224,373,520,0,0,204,552,0,0,688,0,592,288,228,616
%N A347093 Sum of A322577 (convolution of Dedekind psi with Euler phi) and its Dirichlet inverse.
%C A347093 No negative terms in range 1 .. 2^20.
%C A347093 Apparently, A030059 gives the positions of all zeros.
%H A347093 Antti Karttunen, <a href="/A347093/b347093.txt">Table of n, a(n) for n = 1..16384</a>
%F A347093 a(n) = A322577(n) + A347092(n).
%F A347093 For n > 1, a(n) = -Sum_{d|n, 1<d<n} A322577(d) * A347092(n/d).
%F A347093 For all n >= 1, a(A030059(n)) = 0, a(A030229(n)) = 2*A322577(A030229(n)).
%o A347093 (PARI)
%o A347093 up_to = 16384;
%o A347093 A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
%o A347093 A322577(n) = sumdiv(n,d,A001615(n/d)*eulerphi(d));
%o A347093 DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
%o A347093 v347092 = DirInverseCorrect(vector(up_to,n,A322577(n)));
%o A347093 A347092(n) = v347092[n];
%o A347093 A347093(n) = (A322577(n)+A347092(n));
%Y A347093 Cf. A000010, A001615, A030059, A030229, A322577, A347092, A347094.
%K A347093 nonn
%O A347093 1,1
%A A347093 _Antti Karttunen_, Aug 18 2021