cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347095 Sum of Pillai's arithmetical function (A018804) and its Dirichlet inverse.

This page as a plain text file.
%I A347095 #11 Aug 30 2021 21:52:03
%S A347095 2,0,0,9,0,30,0,21,25,54,0,35,0,78,90,49,0,51,0,63,130,126,0,95,81,
%T A347095 150,85,91,0,0,0,113,210,198,234,172,0,222,250,171,0,0,0,147,153,270,
%U A347095 0,235,169,147,330,175,0,231,378,247,370,342,0,405,0,366,221,257,450,0,0,231,450,0,0,424,0,438,245,259,546
%N A347095 Sum of Pillai's arithmetical function (A018804) and its Dirichlet inverse.
%C A347095 No negative terms in range 1 .. 2^20.
%C A347095 Apparently, A030059 gives the positions of all zeros.
%H A347095 Antti Karttunen, <a href="/A347095/b347095.txt">Table of n, a(n) for n = 1..16384</a>
%F A347095 a(n) = A018804(n) + A101035(n).
%F A347095 For n > 1, a(n) = -Sum_{d|n, 1<d<n} A018804(d) * A101035(n/d).
%F A347095 For all n >= 1, a(A030059(n)) = 0, a(A030229(n)) = 2*A018804(A030229(n)).
%o A347095 (PARI)
%o A347095 up_to = 16384;
%o A347095 A018804(n) = sumdiv(n, d, n*eulerphi(d)/d); \\ From A018804
%o A347095 DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
%o A347095 v101035 = DirInverseCorrect(vector(up_to,n,A018804(n)));
%o A347095 A101035(n) = v101035[n];
%o A347095 A347095(n) = (A018804(n)+A101035(n));
%Y A347095 Cf. A018804, A030059, A030229, A101035.
%Y A347095 Cf. also A347094.
%K A347095 nonn
%O A347095 1,1
%A A347095 _Antti Karttunen_, Aug 18 2021