cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A347165 Primes p such that 2*p-1 and (2*p-1)^2+(2*p)^2 are also prime.

Original entry on oeis.org

3, 79, 379, 829, 1279, 2029, 3019, 3109, 3529, 3709, 5479, 5749, 6379, 6709, 7219, 7369, 8689, 11839, 12049, 13219, 13729, 14029, 14419, 15319, 15349, 16189, 17659, 18229, 18439, 20809, 24979, 25819, 26539, 28549, 30859, 32119, 32359, 32779, 33739, 34729, 37039, 38569, 39079, 39679, 44119, 44449
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Aug 20 2021

Keywords

Comments

Except for 3, all terms end in 9.

Examples

			a(3) = 379 is a term because 379, 2*379-1 = 757 and (2*379-1)^2+(2*379)^2 = 1147613 are prime.
		

Crossrefs

Cf. A347110.

Programs

  • Maple
    filter:= proc(p) isprime(p) and isprime(2*p-1) and isprime(8*p^2-4*p+1) end proc:
    select(filter, [3, seq(i,i=9..50000,10)]);
  • Python
    from sympy import isprime, primerange
    def ok(p): return isprime(2*p-1) and isprime((2*p-1)**2 + (2*p)**2)
    def aupto(limit): return list(filter(ok, primerange(2, limit+1)))
    print(aupto(44450)) # Michael S. Branicky, Aug 20 2021
Showing 1-1 of 1 results.