cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347130 a(n) = Sum_{d|n} d * A003415(n/d), where A003415 is the arithmetic derivative.

This page as a plain text file.
%I A347130 #17 Oct 21 2021 16:53:29
%S A347130 0,1,1,6,1,10,1,24,9,14,1,48,1,18,16,80,1,63,1,72,20,26,1,176,15,30,
%T A347130 54,96,1,124,1,240,28,38,24,270,1,42,32,272,1,164,1,144,117,50,1,560,
%U A347130 21,135,40,168,1,324,32,368,44,62,1,552,1,66,153,672,36,244,1,216,52,236,1,936,1,78,165,240,36,284,1,880
%N A347130 a(n) = Sum_{d|n} d * A003415(n/d), where A003415 is the arithmetic derivative.
%C A347130 Dirichlet convolution of the identity function (A000027) with the arithmetic derivative of n (A003415).
%C A347130 Dirichlet convolution of Euler phi (A000010) with A319684.
%H A347130 Antti Karttunen, <a href="/A347130/b347130.txt">Table of n, a(n) for n = 1..10080</a>
%H A347130 Antti Karttunen, <a href="/A347130/a347130.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%F A347130 a(n) = Sum_{d|n} d * A003415(n/d).
%F A347130 a(n) = Sum_{d|n} A000010(n/d) * A319684(d).
%F A347130 a(n) = Sum_{d|n} A347131(d).
%F A347130 a(n) = A003557(n) * A347129(n).
%t A347130 Table[DivisorSum[n, #*(If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &[n/#]) &], {n, 80}] (* _Michael De Vlieger_, Oct 21 2021 *)
%o A347130 (PARI)
%o A347130 A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
%o A347130 A347130(n) = sumdiv(n,d,d*A003415(n/d));
%Y A347130 Inverse Möbius transform of A347131.
%Y A347130 Cf. A000010, A000027, A003415, A003557, A319684, A347129.
%Y A347130 Cf. also A300251, A305809, A319684, A347132, A347133.
%K A347130 nonn
%O A347130 1,4
%A A347130 _Antti Karttunen_, Aug 23 2021