This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347153 #27 Mar 21 2024 08:36:17 %S A347153 0,1,2,3,7,8,9,18,19,20,31,32,38,51,52,53,68,81,82,99,100,101,134,135, %T A347153 143,164,165,182,205,206,207,248,267,268,295,296,297,346,365,366,406, %U A347153 407,430,463,464,485,520,545,546,603,604,605,692,693,694,735,736,765,830,855 %N A347153 Sum of all divisors, except the largest of every number, of the first n odd numbers. %C A347153 Sum of all aliquot divisors (or aliquot parts) of the first n odd numbers. %C A347153 Partial sums of the odd-indexed terms of A001065. %C A347153 a(n) has a symmetric representation. %F A347153 a(n) = A001477(n-1) + A346869(n). %F A347153 G.f.: (1/(1 - x)) * Sum_{k>=0} (2*k + 1) * x^(3*k + 2) / (1 - x^(2*k + 1)). - _Ilya Gutkovskiy_, Aug 20 2021 %F A347153 a(n) = (Pi^2/8 - 1)*n^2 + O(n*log(n)). - _Amiram Eldar_, Mar 21 2024 %t A347153 s[n_] := DivisorSigma[1, 2*n - 1] - 2*n + 1; Accumulate @ Array[s, 100] (* _Amiram Eldar_, Aug 20 2021 *) %o A347153 (Python) %o A347153 from sympy import divisors %o A347153 from itertools import accumulate %o A347153 def A346877(n): return sum(divisors(2*n-1)[:-1]) %o A347153 def aupton(nn): return list(accumulate(A346877(n) for n in range(1, nn+1))) %o A347153 print(aupton(60)) # _Michael S. Branicky_, Aug 20 2021 %o A347153 (PARI) a(n) = sum(k=1, n, k = 2*k-1; sigma(k)-k); \\ _Michel Marcus_, Aug 20 2021 %Y A347153 Partial sums of A346877. %Y A347153 Cf. A000203, A001065, A001477, A005408, A008438, A048050, A153485, A237593, A245092, A244049, A326123, A346869, A346878, A346879, A347154. %K A347153 nonn,easy %O A347153 1,3 %A A347153 _Omar E. Pol_, Aug 20 2021