cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347153 Sum of all divisors, except the largest of every number, of the first n odd numbers.

This page as a plain text file.
%I A347153 #27 Mar 21 2024 08:36:17
%S A347153 0,1,2,3,7,8,9,18,19,20,31,32,38,51,52,53,68,81,82,99,100,101,134,135,
%T A347153 143,164,165,182,205,206,207,248,267,268,295,296,297,346,365,366,406,
%U A347153 407,430,463,464,485,520,545,546,603,604,605,692,693,694,735,736,765,830,855
%N A347153 Sum of all divisors, except the largest of every number, of the first n odd numbers.
%C A347153 Sum of all aliquot divisors (or aliquot parts) of the first n odd numbers.
%C A347153 Partial sums of the odd-indexed terms of A001065.
%C A347153 a(n) has a symmetric representation.
%F A347153 a(n) = A001477(n-1) + A346869(n).
%F A347153 G.f.: (1/(1 - x)) * Sum_{k>=0} (2*k + 1) * x^(3*k + 2) / (1 - x^(2*k + 1)). - _Ilya Gutkovskiy_, Aug 20 2021
%F A347153 a(n) = (Pi^2/8 - 1)*n^2 + O(n*log(n)). - _Amiram Eldar_, Mar 21 2024
%t A347153 s[n_] := DivisorSigma[1, 2*n - 1] - 2*n + 1; Accumulate @ Array[s, 100] (* _Amiram Eldar_, Aug 20 2021 *)
%o A347153 (Python)
%o A347153 from sympy import divisors
%o A347153 from itertools import accumulate
%o A347153 def A346877(n): return sum(divisors(2*n-1)[:-1])
%o A347153 def aupton(nn): return list(accumulate(A346877(n) for n in range(1, nn+1)))
%o A347153 print(aupton(60)) # _Michael S. Branicky_, Aug 20 2021
%o A347153 (PARI) a(n) = sum(k=1, n, k = 2*k-1; sigma(k)-k); \\ _Michel Marcus_, Aug 20 2021
%Y A347153 Partial sums of A346877.
%Y A347153 Cf. A000203, A001065, A001477, A005408, A008438, A048050, A153485, A237593, A245092, A244049, A326123, A346869, A346878, A346879, A347154.
%K A347153 nonn,easy
%O A347153 1,3
%A A347153 _Omar E. Pol_, Aug 20 2021