cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347154 Sum of all divisors, except the largest of every number, of the first n positive even numbers.

This page as a plain text file.
%I A347154 #30 Nov 02 2023 15:34:25
%S A347154 1,4,10,17,25,41,51,66,87,109,123,159,175,203,245,276,296,351,373,423,
%T A347154 477,517,543,619,662,708,774,838,870,978,1012,1075,1153,1211,1285,
%U A347154 1408,1448,1512,1602,1708,1752,1892,1938,2030,2174,2250,2300,2456,2529,2646,2760
%N A347154 Sum of all divisors, except the largest of every number, of the first n positive even numbers.
%C A347154 Sum of all aliquot divisors (or aliquot parts) of the first n positive even numbers.
%C A347154 Partial sums of the even-indexed terms of A001065.
%C A347154 a(n) has a symmetric representation.
%H A347154 Amiram Eldar, <a href="/A347154/b347154.txt">Table of n, a(n) for n = 1..10000</a>
%F A347154 a(n) = n + A346870(n).
%F A347154 a(n) = (5*Pi^2/24 - 1) * n^2 + O(n*log(n)). - _Amiram Eldar_, May 15 2023
%t A347154 s[n_] := DivisorSigma[1, 2*n] - 2*n; Accumulate @ Array[s, 100] (* _Amiram Eldar_, Aug 20 2021 *)
%o A347154 (PARI) a(n) = sum(k=1, n, k*=2; sigma(k)-k); \\ _Michel Marcus_, Aug 20 2021
%o A347154 (Python)
%o A347154 from sympy import divisors
%o A347154 from itertools import accumulate
%o A347154 def A346878(n): return sum(divisors(2*n)[:-1])
%o A347154 def aupton(nn): return list(accumulate(A346878(n) for n in range(1, nn+1)))
%o A347154 print(aupton(51)) # _Michael S. Branicky_, Aug 20 2021
%o A347154 (Python)
%o A347154 from math import isqrt
%o A347154 def A347154(n): return (t:=isqrt(m:=n>>1))**2*(t+1) - sum((q:=m//k)*((k<<1)+q+1) for k in range(1,t+1))-3*((s:=isqrt(n))**2*(s+1) - sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1)-n*(n+1) # _Chai Wah Wu_, Nov 02 2023
%Y A347154 Partial sums of A346878.
%Y A347154 Cf. A000203, A005843, A048050, A062731, A237593, A245092, A244049, A326124, A346870, A346877, A346880, A347153.
%K A347154 nonn,easy
%O A347154 1,2
%A A347154 _Omar E. Pol_, Aug 20 2021