A347171 Triangle read by rows where T(n,k) is the sum of Golay-Rudin-Shapiro terms GRS(j) (A020985) for j in the range 0 <= j < 2^n and having binary weight wt(j) = A000120(j) = k.
1, 1, 1, 1, 2, -1, 1, 3, -1, 1, 1, 4, 0, 0, -1, 1, 5, 2, -2, 1, 1, 1, 6, 5, -4, 3, -2, -1, 1, 7, 9, -5, 3, -3, 3, 1, 1, 8, 14, -4, 0, 0, 2, -4, -1, 1, 9, 20, 0, -6, 6, -4, 0, 5, 1, 1, 10, 27, 8, -14, 12, -10, 8, -3, -6, -1, 1, 11, 35, 21, -22, 14, -10, 10, -11, 7, 7, 1
Offset: 0
Examples
Triangle begins k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 n=0: 1 n=1: 1, 1 n=2: 1, 2, -1 n=3: 1, 3, -1, 1 n=4: 1, 4, 0, 0, -1 n=5: 1, 5, 2, -2, 1, 1 n=6: 1, 6, 5, -4, 3, -2, -1 n=7: 1, 7, 9, -5, 3, -3, 3, 1 For T(5,3), those j in the range 0 <= j < 2^5 with wt(j) = 3 are j = 7 11 13 14 19 21 22 25 26 28 GRS(j) = +1 -1 -1 +1 -1 +1 -1 -1 -1 +1 total -2 = T(5,3)
Links
- Kevin Ryde, Table of n, a(n) for rows 0 to 100, flattened
- John Brillhart and Patrick Morton, Über Summen von Rudin-Shapiroschen Koeffizienten, Illinois Journal of Mathematics, volume 22, issue 1, 1978, pages 126-148.
- Christophe Doche and Michel Mendès France, An Exercise on the Average Number of Real Zeros of Random Real Polynomials, Finite and Infinite Combinatorics conference, Budapest, 2001, pages 1-14, see Rudin-Shapiro example page 9.
Programs
-
PARI
my(M=Mod('x, 'x^2-(1-'y)*'x-2*'y)); row(n) = Vecrev(subst(lift(M^n),'x,'y+1));
Formula
T(n,k) = T(n-1,k) - T(n-1,k-1) + 2*T(n-2,k-1) for n>=2, and taking T(n,k)=0 if k<0 or k>n.
T(n,k) = (-1)^k * A104967(n,n-k).
Row polynomial P_n(y) = (1-y)*P_{n-1}(y) + 2*y*P_{n-2}(y) for n>=2. [Doche and Mendès France]
G.f.: (1 + 2*x*y)/(1 + x*(y-1) - 2*x^2*y).
Column g.f.: C_k(x) = 1/(1-x) for k=0 and C_k(x) = x^k * (2*x-1)^(k-1) / (1-x)^(k+1) for k>=1.
Comments