This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347173 #19 Feb 24 2024 10:16:07 %S A347173 1,1,1,1,1,1,1,1,10,1,1,10,1,1,10,1,1,10,1,1,10,1,1,10,26,1,10,1,1,35, %T A347173 1,1,10,1,26,10,1,1,10,26,1,10,1,1,35,1,1,10,50,26,10,1,1,10,26,50,10, %U A347173 1,1,35,1,1,59,1,26,10,1,1,10,75,1,10,1,1,35,1,50,10,1,26 %N A347173 Sum of squares of odd divisors of n that are <= sqrt(n). %H A347173 David A. Corneth, <a href="/A347173/b347173.txt">Table of n, a(n) for n = 1..10000</a> %F A347173 G.f.: Sum_{k>=1} (2*k - 1)^2 * x^((2*k - 1)^2) / (1 - x^(2*k - 1)). %e A347173 a(18) = 10 as the odd divisors of 18 are the divisors of 9 which are 1, 3 and 9. Of those, 1 and 3 are <= sqrt(18) so we find the squares of 1 and 3 then add them i.e., a(18) = 1^2 + 3^2 = 10. - _David A. Corneth_, Feb 24 2024 %t A347173 Table[DivisorSum[n, #^2 &, # <= Sqrt[n] && OddQ[#] &], {n, 1, 80}] %t A347173 nmax = 80; CoefficientList[Series[Sum[(2 k - 1)^2 x^((2 k - 1)^2)/(1 - x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest %o A347173 (PARI) a(n) = sum(k=0, sqrtint(n), if ((k%2) && !(n%k), k^2)); \\ _Michel Marcus_, Aug 22 2021 %o A347173 (PARI) %o A347173 a(n) = { %o A347173 my(s = sqrtint(n), res); %o A347173 n>>=valuation(n, 2); %o A347173 d = divisors(n); %o A347173 for(i = 1, #d, %o A347173 if(d[i] <= s, %o A347173 res += d[i]^2 %o A347173 , %o A347173 return(res) %o A347173 ) %o A347173 ); res %o A347173 } \\ _David A. Corneth_, Feb 24 2024 %Y A347173 Cf. A001157, A050999, A069288, A069289, A095118, A347161, A347174, A347175. %K A347173 nonn,easy %O A347173 1,9 %A A347173 _Ilya Gutkovskiy_, Aug 21 2021