This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347174 #20 Feb 24 2024 11:03:35 %S A347174 1,1,1,1,1,1,1,1,28,1,1,28,1,1,28,1,1,28,1,1,28,1,1,28,126,1,28,1,1, %T A347174 153,1,1,28,1,126,28,1,1,28,126,1,28,1,1,153,1,1,28,344,126,28,1,1,28, %U A347174 126,344,28,1,1,153,1,1,371,1,126,28,1,1,28,469,1,28,1,1,153 %N A347174 Sum of cubes of odd divisors of n that are <= sqrt(n). %H A347174 David A. Corneth, <a href="/A347174/b347174.txt">Table of n, a(n) for n = 1..10000</a> %F A347174 G.f.: Sum_{k>=1} (2*k - 1)^3 * x^((2*k - 1)^2) / (1 - x^(2*k - 1)). %e A347174 a(18) = 28 as the odd divisors of 18 are the divisors of 9 which are 1, 3 and 9. Of those, 1 and 3 are <= sqrt(18) so we find the cubes of 1 and 3 then add them i.e., a(18) = 1^3 + 3^3 = 28. - _David A. Corneth_, Feb 24 2024 %t A347174 Table[DivisorSum[n, #^3 &, # <= Sqrt[n] && OddQ[#] &], {n, 1, 75}] %t A347174 nmax = 75; CoefficientList[Series[Sum[(2 k - 1)^3 x^((2 k - 1)^2)/(1 - x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest %o A347174 (PARI) a(n) = sum(k=0, sqrtint(n), if ((k%2) && !(n%k), k^3)); \\ _Michel Marcus_, Aug 22 2021 %o A347174 (PARI) %o A347174 a(n) = { %o A347174 my(s = sqrtint(n), res); %o A347174 n>>=valuation(n, 2); %o A347174 d = divisors(n); %o A347174 for(i = 1, #d, %o A347174 if(d[i] <= s, %o A347174 res += d[i]^3 %o A347174 , %o A347174 return(res) %o A347174 ) %o A347174 ); res %o A347174 } \\ _David A. Corneth_, Feb 24 2024 %Y A347174 Cf. A001158, A051000, A069288, A069289, A280375, A347162, A347173, A347175. %K A347174 nonn,easy %O A347174 1,9 %A A347174 _Ilya Gutkovskiy_, Aug 21 2021