This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347182 #25 Aug 24 2021 17:57:55 %S A347182 1,10,11,91,9,21,6,16,26,24,18,45,12,51,3,13,27,36,38,22,56,28,29,32, %T A347182 41,4,31,23,14,76,89,55,47,42,7,25,5,15,34,69,39,61,92,86,8,35,67,100, %U A347182 17,43,78,87,33,71,81,64,54,66,96,72,99,101,109,90,44,102,60,46,79,48,58,98,151,75,37,19 %N A347182 Lexicographically earliest sequence of distinct positive integers such that all digits of a(n) are visible in a(n) * a(n+1). %C A347182 a(3) = 11 has two digits "1"; they must both be visible in a(3) * a(4) and this is the case as a(3) * a(4) = 11 * 91 = 1001. %C A347182 Is this a permutation of the positive integers? - _Pontus von Brömssen_, Aug 23 2021 %H A347182 Pontus von Brömssen, <a href="/A347182/b347182.txt">Table of n, a(n) for n = 1..10000</a> %e A347182 a(1) * a(2) = 1 * 10 = 10; %e A347182 a(2) * a(3) = 10 * 11 = 110; %e A347182 a(3) * a(4) = 11 * 91 = 1001; %e A347182 a(4) * a(5) = 91 * 9 = 819; %e A347182 a(5) * a(6) = 9 * 21 = 189; etc. %o A347182 (Python) %o A347182 from collections import Counter %o A347182 def A347182_list(n): %o A347182 a = [1] %o A347182 m = 2 # Smallest number not yet in a. %o A347182 M = 1 # Largest number in a so far. %o A347182 used = [] # Indicator for what numbers m..M that are in a so far. %o A347182 for i in range(n - 1): %o A347182 c0 = Counter(str(a[-1])) %o A347182 x = m %o A347182 while 1: %o A347182 if x > M or not used[x - m]: %o A347182 c = Counter(str(a[-1] * x)) %o A347182 if all(c[d] >= c0[d] for d in "0123456789"): %o A347182 break %o A347182 x += 1 %o A347182 if x > M: %o A347182 used.extend([0] * (x - M - 1) + [1]) %o A347182 M = x %o A347182 else: %o A347182 used[x - m] = 1 %o A347182 if x == m: %o A347182 j = next((j for j in range(len(used)) if not used[j]), len(used)) %o A347182 m += j %o A347182 del used[:j] %o A347182 a.append(x) %o A347182 return a # _Pontus von Brömssen_, Aug 24 2021 %Y A347182 Cf. A347180, A347181, A347183. %K A347182 base,nonn %O A347182 1,2 %A A347182 _Eric Angelini_ and _Carole Dubois_, Aug 22 2021