A347189 Positive integers that can be expressed as the sum of powers of their digits (from right to left) with consecutive natural exponents.
1, 2, 3, 4, 5, 6, 7, 8, 9, 24, 332, 1676, 121374, 4975929, 134116265, 1086588775, 3492159897, 8652650287, 8652650482
Offset: 1
Examples
24 = 4^2 + 2^3 is a term. 332 = 2^3 + 3^4 + 3^5 is another term.
Programs
-
Python
liste = [] for ex in range(0, 20): for t in range(1, 10000): n = t pot = ex ergebnis = 0 while n > 0: pot = pot + 1 rest = n % 10 n = (n - rest) // 10 zw = 1 for i in range(pot): zw = zw * rest ergebnis = ergebnis + zw if (int(ergebnis) == t) and (t not in liste): liste.append(t) liste.sort() print(liste)
-
Python
def powsum(digits, startexp): return sum(digits[i]**(startexp+i) for i in range(len(digits))) def ok(n): if n < 10: return True s = str(n) if set(s) <= {'0', '1'}: return False digits, startexp = list(map(int, s))[::-1], 1 while powsum(digits, startexp) < n: startexp += 1 return n == powsum(digits, startexp) print(list(filter(ok, range(2*10**5)))) # Michael S. Branicky, Aug 29 2021
Extensions
a(15)-a(19) from Michael S. Branicky, Aug 31 2021
Comments