cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347195 Decimal expansion of Sum_{primes p > 2} log(p) / ((p-2)*(p-1)).

Original entry on oeis.org

8, 5, 9, 3, 9, 2, 2, 3, 1, 3, 5, 8, 5, 6, 8, 6, 8, 9, 7, 1, 8, 7, 1, 4, 5, 1, 4, 1, 8, 6, 1, 2, 3, 2, 8, 1, 7, 6, 9, 9, 6, 0, 9, 1, 7, 6, 9, 8, 3, 1, 1, 2, 1, 1, 4, 7, 4, 1, 6, 3, 4, 2, 6, 5, 9, 0, 3, 8, 3, 9, 6, 4, 9, 4, 1, 6, 7, 1, 1, 1, 3, 1, 3, 6, 3, 1, 7, 2, 1, 4, 3, 9, 6, 2, 2, 2, 8, 6, 5, 8, 3, 8, 0, 6, 6, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 22 2021

Keywords

Comments

Constant is related to the asymptotics of A069205.

Examples

			0.8593922313585686897187145141861232817699609176983112114741634265903839649...
		

Crossrefs

Programs

  • Mathematica
    ratfun = 1/((p-2)*(p-1)); zetas = 0; ratab = Table[konfun = Simplify[ratfun + c/(p^power - 1)] // Together; coefs = CoefficientList[Numerator[konfun], p]; sol = Solve[Last[coefs] == 0, c][[1]]; zetas = zetas + c*(Zeta'[power]/Zeta[power] + Log[2]/(2^power - 1)) /. sol; ratfun = konfun /. sol, {power, 2, 25}]; Do[Print[N[Sum[Log[p]*ratfun /. p -> Prime[k], {k, 2, m}] + zetas, 110]], {m, 2000, 10000, 2000}]