This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347196 #35 Oct 09 2021 15:55:57 %S A347196 0,1,0,3,6,1,2,3,18,5,0,8,6,1,2,13,50,17,32,4,23,9,7,29,18,5,0,37,34, %T A347196 1,12,13,130,49,88,16,67,31,20,3,56,22,24,8,6,38,28,84,50,17,32,4,70, %U A347196 9,39,36,90,33,0,40,110,11,12,43,322,129,224,48,175,87,53,15 %N A347196 Let c(k) be the infinite binary string 010111001... (A030308), the concatenation of reverse order integer binary words ( 0;1;01;11;001;101;... ). a(n) is the bit index k of the first occurrence of the reverse order binary word of n ( n = 2^0*c(a(n)) + 2^1*c(a(n)+1) + ... ). %C A347196 It is not surprising to see dyadic self-similarity in the graph of this sequence. For example the graph of a(0..2^9) looks like a rescaled version of a(0..2^8). Each of these intervals reminds a bit of particle traces in a cloud chamber. %H A347196 Thomas Scheuerle, <a href="/A347196/b347196.txt">Table of n, a(n) for n = 0..5000</a> %F A347196 a(n) <= Sum_{k=0..n} A070939(k). %e A347196 pos:0,1,2,3,4,5,6,7,8,9,... %e A347196 c: 0|1|0,1|1,1|0,0,1|1,0,1... %e A347196 0 a(0) = 0 %e A347196 . 1 a(1) = 1 %e A347196 0 1 a(2) = 0 %e A347196 . . . 1 1 a(3) = 3 %e A347196 . . . . . . 0 0 1 a(4) = 6 %e A347196 . 1 0 1 a(5) = 1 %e A347196 . . 0 1 1 a(6) = 2 %o A347196 (MATLAB) %o A347196 function a = A347196( max_n) %o A347196 c = 0; a = 0; %o A347196 for n = 1:max_n %o A347196 b = bitget(n,1:64); %o A347196 c = [c b(1:find(b == 1, 1, 'last' ))]; %o A347196 end %o A347196 for n = 1:max_n %o A347196 b = bitget(n,1:64); %o A347196 word = b(1:find(b == 1, 1, 'last' )); %o A347196 pos = strfind(c, word); %o A347196 a(n+1) = pos(1)-1; %o A347196 end %o A347196 end %Y A347196 Cf. A030304, A030308, A030311, A070939. %K A347196 nonn,base,easy,look %O A347196 0,4 %A A347196 _Thomas Scheuerle_, Aug 22 2021