cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347196 Let c(k) be the infinite binary string 010111001... (A030308), the concatenation of reverse order integer binary words ( 0;1;01;11;001;101;... ). a(n) is the bit index k of the first occurrence of the reverse order binary word of n ( n = 2^0*c(a(n)) + 2^1*c(a(n)+1) + ... ).

This page as a plain text file.
%I A347196 #35 Oct 09 2021 15:55:57
%S A347196 0,1,0,3,6,1,2,3,18,5,0,8,6,1,2,13,50,17,32,4,23,9,7,29,18,5,0,37,34,
%T A347196 1,12,13,130,49,88,16,67,31,20,3,56,22,24,8,6,38,28,84,50,17,32,4,70,
%U A347196 9,39,36,90,33,0,40,110,11,12,43,322,129,224,48,175,87,53,15
%N A347196 Let c(k) be the infinite binary string 010111001... (A030308), the concatenation of reverse order integer binary words ( 0;1;01;11;001;101;... ). a(n) is the bit index k of the first occurrence of the reverse order binary word of n ( n = 2^0*c(a(n)) + 2^1*c(a(n)+1) + ... ).
%C A347196 It is not surprising to see dyadic self-similarity in the graph of this sequence. For example the graph of a(0..2^9) looks like a rescaled version of a(0..2^8). Each of these intervals reminds a bit of particle traces in a cloud chamber.
%H A347196 Thomas Scheuerle, <a href="/A347196/b347196.txt">Table of n, a(n) for n = 0..5000</a>
%F A347196 a(n) <= Sum_{k=0..n} A070939(k).
%e A347196 pos:0,1,2,3,4,5,6,7,8,9,...
%e A347196 c:  0|1|0,1|1,1|0,0,1|1,0,1...
%e A347196     0                           a(0) = 0
%e A347196     . 1                         a(1) = 1
%e A347196     0 1                         a(2) = 0
%e A347196     . . . 1 1                   a(3) = 3
%e A347196     . . . . . . 0 0 1           a(4) = 6
%e A347196     . 1 0 1                     a(5) = 1
%e A347196     . . 0 1 1                   a(6) = 2
%o A347196 (MATLAB)
%o A347196 function a = A347196( max_n)
%o A347196     c = 0; a = 0;
%o A347196     for n = 1:max_n
%o A347196         b = bitget(n,1:64);
%o A347196         c = [c b(1:find(b == 1, 1, 'last' ))];
%o A347196     end
%o A347196     for n = 1:max_n
%o A347196         b = bitget(n,1:64);
%o A347196         word = b(1:find(b == 1, 1, 'last' ));
%o A347196         pos = strfind(c, word);
%o A347196         a(n+1) = pos(1)-1;
%o A347196     end
%o A347196 end
%Y A347196 Cf. A030304, A030308, A030311, A070939.
%K A347196 nonn,base,easy,look
%O A347196 0,4
%A A347196 _Thomas Scheuerle_, Aug 22 2021