This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347222 #16 Sep 24 2021 16:12:22 %S A347222 30,140,2480,6200,40640,167751680,42949345280,687193456640, %T A347222 11529215040699760640,13292279957849158723273463079769210880, %U A347222 957809713041180536473966890421518190654986607740846080,65820182292848241686198767302293614551117361591934715588918640640 %N A347222 Numbers k for which sigma(k)/k = 12/5. %C A347222 This sequence will contain terms of the form 5*P, where P is a perfect number (A000396) not divisible by 5. Proof: sigma(5*P)/(5*P) = sigma(5)*sigma(P)/(5*P) = 6*(2*P)/(5*P) = 12/5. QED %C A347222 Terms ending in "30", "40", or "80" have this form. Example: a(n) = 5*A000396(n) for n = 1, 2, 3 and a(n) = 5*A000396(n-1) for n = 5..12. %H A347222 G. P. Michon, <a href="http://www.numericana.com/answer/numbers.htm#multiperfect">Multiperfect Numbers and Hemiperfect Numbers</a> %H A347222 Walter Nissen, <a href="http://upforthecount.com/math/abundance.html">Abundancy: Some Resources (preliminary version 4)</a> %H A347222 Walter Nissen, <a href="http://upforthecount.com/math/ffp8.html">Primitive Friendly Pairs with friends < 2^34 with denom < 20000</a> %e A347222 6200 is a term, since sigma(6200)/6200 = 14880/6200 = 12/5. %t A347222 Select[Range[5*10^8], DivisorSigma[1, #]/# == 12/5 &] %t A347222 Do[If[DivisorSigma[1, k]/k == 12/5, Print[k]], {k, 5*10^8}] %Y A347222 Cf. A000203, A000396. %Y A347222 Subsequence of A005101 and A218407. %K A347222 nonn %O A347222 1,1 %A A347222 _Timothy L. Tiffin_, Aug 23 2021 %E A347222 a(9)-a(10) from _Michel Marcus_, Aug 24 2021 %E A347222 a(11)-a(12) from _David A. Corneth_, Aug 24 2021