cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347225 Lesser of twin primes (A001359) being both half-period primes (A097443).

Original entry on oeis.org

197, 599, 881, 1277, 1997, 2081, 2237, 2801, 2999, 3359, 4721, 5279, 5879, 6197, 6959, 7877, 8837, 9239, 9719, 12161, 12239, 13721, 17921, 17957, 18521, 21839, 22637, 24917, 28277, 30557, 31319, 31721, 32117, 32441, 32717, 34757, 35081, 35279, 35837, 38921, 39239, 39839
Offset: 1

Views

Author

Lamine Ngom, Aug 24 2021

Keywords

Comments

A proper subset of both A001359 and A097443.
Number of terms < 10^k: 0, 0, 3, 19, 86, 516, 3686, 27834, 216758, 1739358, …
A243096 provides lesser of twin primes being both full reptend primes (A001913, A006883): in other words, lesser of twin primes whose periods difference is 2.
This sequence lists lesser of twin primes whose periods difference is 1. Equivalently, these twin primes are both half-period primes (A097443).
The twin primes conjecture being true should imply that these two sequences are infinite.
Surprisingly, apart from 1 and 2, for any other value of k integer, it appears that the sequence "lesser of twin primes whose periods difference is k" is empty or contains at most two terms (no counterexample found for twin primes below 10^9).

Examples

			The decimal expansion 1/p for the prime p = 1277 has a periodic part length equal to (p-1)/2. 1277 is thus a half-period prime. The same applies for p + 2 = 1279 (prime). Hence 1277 is in sequence.
		

Crossrefs

Programs

  • Maple
    select(t -> isprime(t) and isprime(t + 2) and numtheory:-order(10, t) = (t - 1)/2 and numtheory:-order(10, t + 2) = (t + 1)/2, [seq(t, t = 3 .. 40000, 2)]);

Formula

a(n) is congruent to {11, 17, 29} mod 30.