cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347263 Irregular triangle read by rows: T(n,k) is the sum of the subparts of the ziggurat diagram of n (described in A347186) that arise from the (2*k-1)-th double-staircase of the double-staircases diagram of n (described in A335616), n >= 1, k >= 1, and the first element of column k is in row A000384(k).

This page as a plain text file.
%I A347263 #127 Feb 27 2022 22:19:10
%S A347263 1,4,6,16,12,36,1,20,0,64,0,30,6,90,0,42,0,144,17,56,0,156,0,72,34,1,
%T A347263 256,0,0,90,0,0,324,10,0,110,0,0,400,0,8,132,70,0,342,0,0,156,0,0,576,
%U A347263 121,0,182,0,25,462,0,0,210,102,0,784,0,0,1,240,0,0,0,900,24,52,0,272,0,0,0
%N A347263 Irregular triangle read by rows: T(n,k) is the sum of the subparts of the ziggurat diagram of n (described in A347186) that arise from the (2*k-1)-th double-staircase of the double-staircases diagram of n (described in A335616), n >= 1, k >= 1, and the first element of column k is in row A000384(k).
%C A347263 Conjecture 1: the number of nonzero terms in row n equals A082647(n).
%C A347263 Conjecture 2: column k lists positive integers interleaved with 2*k+2 zeros.
%C A347263 The subparts of the ziggurat diagram are the polygons formed by the cells that are under the staircases.
%C A347263 The connection of the subparts of the ziggurat diagram with the polygonal numbers is as follows:
%C A347263 The area under a double-staircase labeled with the number j is equal to the m-th (j+2)-gonal number plus the (m-1)-th (j+2)-gonal number, where m is the number of steps on one side of the ladder from the base to the top.
%C A347263 The area under a simple-staircase labeled with the number j is equal to the m-th (j+2)-gonal number, where m is the number of steps.
%C A347263 So the k-th column of the triangle is related to the (2*k+1)-gonal numbers, for example:
%C A347263 For the calculation of column 1 we use triangular numbers A000217.
%C A347263 For the calculation of column 2 we use pentagonal numbers A000326.
%C A347263 For the calculation of column 3 we use heptagonal numbers A000566.
%C A347263 For the calculation of column 4 we use enneagonal numbers A001106.
%C A347263 And so on.
%C A347263 More generally, for the calculation of column k we use the (2*k+1)-gonal numbers.
%C A347263 For further information about the ziggurat diagram see A347186.
%e A347263 Triangle begins:
%e A347263    n / k   1    2    3    4
%e A347263 ------------------------------
%e A347263    1 |     1;
%e A347263    2 |     4;
%e A347263    3 |     6;
%e A347263    4 |    16;
%e A347263    5 |    12;
%e A347263    6 |    36,   1;
%e A347263    7 |    20,   0;
%e A347263    8 |    64,   0;
%e A347263    9 |    30,   6;
%e A347263   10 |    90,   0;
%e A347263   11 |    42,   0;
%e A347263   12 |   144,  17;
%e A347263   13 |    56,   0;
%e A347263   14 |   156,   0;
%e A347263   15 |    72,  34,   1;
%e A347263   16 |   256,   0,   0;
%e A347263   17 |    90,   0,   0;
%e A347263   18 |   324,  10,   0;
%e A347263   19 |   110,   0    0;
%e A347263   20 |   400,   0,   8;
%e A347263   21 |   132,  70,   0;
%e A347263   22 |   342,   0,   0;
%e A347263   23 |   156,   0,   0;
%e A347263   24 |   576, 121,   0;
%e A347263   25 |   182,   0,  25;
%e A347263   26 |   462,   0,   0;
%e A347263   27 |   210, 102,   0;
%e A347263   28 |   784,   0,   0,   1;
%e A347263 ...
%e A347263 For n = 15 the calculation of the 15th row of the triangle (in accordance with the geometric algorithm described in A347186) is as follows:
%e A347263 Stage 1 (Construction):
%e A347263 We draw the diagram called "double-staircases" with 15 levels described in A335616.
%e A347263 Then we label the five double-staircases (j = 1..5) as shown below:
%e A347263                                _
%e A347263                              _| |_
%e A347263                            _|  _  |_
%e A347263                          _|   | |   |_
%e A347263                        _|    _| |_    |_
%e A347263                      _|     |  _  |     |_
%e A347263                    _|      _| | | |_      |_
%e A347263                  _|       |   | |   |       |_
%e A347263                _|        _|  _| |_  |_        |_
%e A347263              _|         |   |  _  |   |         |_
%e A347263            _|          _|   | | | |   |_          |_
%e A347263          _|           |    _| | | |_    |           |_
%e A347263        _|            _|   |   | |   |   |_            |_
%e A347263      _|             |     |  _| |_  |     |             |_
%e A347263    _|              _|    _| |  _  | |_    |_              |_
%e A347263   |_ _ _ _ _ _ _ _|_ _ _|_ _|_|_|_|_ _|_ _ _|_ _ _ _ _ _ _ _|
%e A347263   1               2     3   4 5
%e A347263 .
%e A347263 Stage 2 (Debugging):
%e A347263 We remove the fourth double-staircase as it does not have at least one step at level 1 of the diagram starting from the base, as shown below:
%e A347263                                _
%e A347263                              _| |_
%e A347263                            _|  _  |_
%e A347263                          _|   | |   |_
%e A347263                        _|    _| |_    |_
%e A347263                      _|     |  _  |     |_
%e A347263                    _|      _| | | |_      |_
%e A347263                  _|       |   | |   |       |_
%e A347263                _|        _|  _| |_  |_        |_
%e A347263              _|         |   |     |   |         |_
%e A347263            _|          _|   |     |   |_          |_
%e A347263          _|           |    _|     |_    |           |_
%e A347263        _|            _|   |         |   |_            |_
%e A347263      _|             |     |         |     |             |_
%e A347263    _|              _|    _|    _    |_    |_              |_
%e A347263   |_ _ _ _ _ _ _ _|_ _ _|_ _ _|_|_ _ _|_ _ _|_ _ _ _ _ _ _ _|
%e A347263   1               2     3     5
%e A347263 .
%e A347263 Stage 3 (Annihilation):
%e A347263 We delete the second double-staircase and the steps of the first double-staircase that are just above the second double-staircase.
%e A347263 The new diagram has two double-staircases and two simple-staircases as shown below:
%e A347263                                _
%e A347263                               | |
%e A347263                  _            | |            _
%e A347263                _| |          _| |_          | |_
%e A347263              _|   |         |     |         |   |_
%e A347263            _|     |         |     |         |     |_
%e A347263          _|       |        _|     |_        |       |_
%e A347263        _|         |       |         |       |         |_
%e A347263      _|           |       |         |       |           |_
%e A347263    _|             |      _|    _    |_      |             |_
%e A347263   |_ _ _ _ _ _ _ _|_ _ _|_ _ _|_|_ _ _|_ _ _|_ _ _ _ _ _ _ _|
%e A347263   1                     3     5
%e A347263 .
%e A347263 The diagram is called "ziggurat of 15".
%e A347263 Now we calculate the area (or the number of cells) under the staircases with multiplicity using polygonal numbers as shown below:
%e A347263 The area under the staircase labeled 1 is equal to A000217(8) = 36. There is a pair of these staircases, so T(15,1) = 2*36 = 72.
%e A347263 The area under the double-staircase labeled 3 is equal to A000326(4) + A000326(3) = 22 + 12 = 34, so T(15,2) = 34.
%e A347263 The area under the double-staircase labeled 5 is equal to A000566(1) + A000566(0) = 1 + 0 = 1, so T(15,3) = 1.
%e A347263 Therefore the 15th row of the triangle is [72, 34, 1].
%Y A347263 Row sums give A347186.
%Y A347263 Row n has length A351846(n).
%Y A347263 Cf. A347529 (analog for the symmetric representation of sigma).
%Y A347263 Cf. A000217, A000326, A000384, A000566, A001106, A082647, A139600, A139601, A237270, A237271, A237593, A279387, A279388, A279391, A335616, A346875.
%K A347263 nonn,tabf
%O A347263 1,2
%A A347263 _Omar E. Pol_, Sep 05 2021