This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347272 #29 Apr 04 2024 12:52:38 %S A347272 1,1,5,4,2,8,26,4,52,1,16,2,1,16,8,2,4,8,4,1,4,1,4,4,4,1,155,1,4,2, %T A347272 395,2,1,2,1,2,1,4,4,4,668,1,4,1,4,2,425,1,1,4,2,4,2,850,425,1,1,2,2, %U A347272 4,2,4858,2429,1,4,2,1,2,1,4,2308,4,3644,1,1,2,1,1,4,4,4 %N A347272 Main diagonal of the square array A347270. %C A347272 A347270 is related to the 3x + 1 (or Collatz) problem. %C A347272 Conjectures from _Alois P. Heinz_, Aug 31 2021: (Start) %C A347272 a(n) in {1, 2, 4, 5, 8, 10, 16, 26, 52, 53, 106, 155, 395, 425, 488, 668, 850, 866, 1732, 2308, 2429, 3644, 4858} for n >= 0. %C A347272 a(n) in {1, 2, 4} for n >= 110. (End) %H A347272 Alois P. Heinz, <a href="/A347272/b347272.txt">Table of n, a(n) for n = 0..10000</a> %H A347272 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a> %p A347272 b:= proc(n, k) option remember; `if`(k=0, n, (j-> %p A347272 `if`(j::even, j/2, 3*j+1))(b(n, k-1))) %p A347272 end: %p A347272 a:= n-> b(n+1, n): %p A347272 seq(a(n), n=0..80); # _Alois P. Heinz_, Aug 25 2021 %t A347272 b[n_, k_] := b[n, k] = If[k == 0, n, Function[j, %t A347272 If[EvenQ[j], j/2, 3*j + 1]][b[n, k - 1]]]; %t A347272 a[n_] := b[n + 1, n]; %t A347272 Table[a[n], {n, 0, 80}] (* _Jean-François Alcover_, Apr 07 2022, after _Alois P. Heinz_ *) %Y A347272 Cf. A006370, A033478, A033479, A075884, A076536, A153727, A347270, A371690 (parity). %K A347272 nonn %O A347272 0,3 %A A347272 _Omar E. Pol_, Aug 25 2021