This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347277 #16 Sep 29 2021 09:01:22 %S A347277 0,1,0,2,1,0,3,3,2,0,4,6,8,3,0,5,10,20,18,6,0,6,15,40,60,48,8,0,7,21, %T A347277 70,150,204,108,18,0,8,28,112,315,624,640,312,30,0,9,36,168,588,1554, %U A347277 2500,2340,810,56,0,10,45,240,1008,3360,7560,11160,8160,2184,96,0 %N A347277 Table T(n,k) read by downward antidiagonals: A quotient belonging to a generalization of Euler's theorem. %C A347277 The quotient T(n,k) = (k^n - k^(n-phi(n)))/n results from the generalization k^n == k^(n-phi(n)) (mod n) of Euler's theorem (see Sierpiński, p. 243). %C A347277 The n-th row of the table is equal to the n-th row of A074650 iff n = p^j (p prime, j>=1). %D A347277 W. Sierpiński, Elementary Theory of Numbers, Warszawa, 1964. %F A347277 T(n,k) = (k^n - k^(n - phi(n)))/n. %e A347277 T(4,3) = (3^4 - 3^2)/4 = 18. %e A347277 Square array starts: %e A347277 0, 1, 2, 3, 4, 5, ... %e A347277 0, 1, 3, 6, 10, 15, ... %e A347277 0, 2, 8, 20, 40, 70, ... %e A347277 0, 3, 18, 60, 150, 315, ... %e A347277 0, 6, 48, 204, 624, 1554, ... %e A347277 0, 8, 108, 640, 2500, 7560, ... %p A347277 with(numtheory): %p A347277 T:= proc(n, k) (k^n-k^(n-phi(n)))/n end: %p A347277 seq(seq(T(i, 1+d-i), i=1..d), d=1..11); %o A347277 (PARI) T(n,k) = (k^n - k^(n - eulerphi(n)))/n; \\ _Jinyuan Wang_, Aug 28 2021 %Y A347277 Cf. A074650. %K A347277 nonn,tabl %O A347277 1,4 %A A347277 _Franz Vrabec_, Aug 26 2021 %E A347277 More terms from _Jinyuan Wang_, Aug 28 2021