This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347284 #18 May 19 2023 17:26:51 %S A347284 1,2,12,24,720,151200,302400,1814400,4191264000,8382528000, %T A347284 251727315840000,503454631680000,3020727790080000, %U A347284 1542111744113740800000,3084223488227481600000,92526704646824448000000,555160227880946688000000,1110320455761893376000000,10769764221549079560253440000000 %N A347284 a(n) = Product_{j=1..A089576(n)} p_j^e_j with e_j = floor(e_(j-1)*log(p_(j-1))/log(p_j)) where the first factor is 2^n. %C A347284 a(n) is the product of the largest prime power divisors p_j^e_j such that p_j^e_j < p_(j-1)^e_(j-1), beginning with p_1^e_1 = 2^n and proceeding with the next prime p until e_j = 0. %C A347284 {a(n)} is a subset of A025487 which is a subset of A055932. All terms are products of primorials. No primes p_j for 1 <= j <= L have e = 0 with the exception of a(0) = 2^0. Let L = A001221(a(n)). %C A347284 The largest primorial divisor P(L) = A2110(L). %C A347284 For n > 0, all terms are even. %C A347284 The greatest prime divisor p_L has multiplicity e_L = 1. %C A347284 All multiplicities e are distinct; for 1 <= j <= L, the multiplicity e_j >= L - j + 1. %C A347284 a(k) | a(n) for 0 <= k <= n. %C A347284 The numbers q = a(n+1)/a(n) are primorials. %C A347284 Finite intersection of A002182 and a(n) = {1, 2, 12, 360, 75600}. %C A347284 Chernoff number A006939(L) | a(n). Quotient K = a(n) | A006939(L) is in A025487. %C A347284 The prime shape of terms resembles a simplified map of the US state of Idaho. %H A347284 Michael De Vlieger, <a href="/A347284/b347284.txt">Table of n, a(n) for n = 0..144</a> %H A347284 Michael De Vlieger, <a href="/A347284/a347284.png">Bitmap resulting from binary compactification of a(n)</a>, 0 <= n <= 4096. %H A347284 Michael De Vlieger, <a href="/A347284/a347284.gif">Animation of prime shapes of a(n)</a> for 2 <= n <= 37, illustrating a(n) as a product of a particular sequence of primorials. %F A347284 a(n) = Product_{j=1..k} p_j^T(n,j) where T = A347285 and k = A089576(n). %F A347284 Row n of A347285 yields row a(n) of A067255. %F A347284 a(n) = product of row n of A347288. %e A347284 a(0) = 2^0 = 1; %e A347284 a(1) = 2^1 = 2, since 3^1 > 2^1; %e A347284 a(2) = 2^2 * 3^1, since 3^1 < 2^2 but 3^2 > 2^2, and since 5^1 > 3^1; %e A347284 a(3) = 2^3 * 3^1, since 3^1 < 2^3 but 3^2 > 2^3, and 5^1 > 3^1; %e A347284 a(4) = 2^4 * 3^2 * 5^1, since 3^2 < 2^4 yet 3^3 > 2^4, 5^1 < 3^2 yet 5^2 > 3^2, and 7^1 > 5^1; etc. %e A347284 Prime shapes of a(n) for 2 <= n <= 5: %e A347284 5 o %e A347284 4 o 4 x %e A347284 3 o 3 x 3 x x %e A347284 2 x 2 x 2 x x 2 x x x %e A347284 a(2) 1 X X a(3) 1 X X a(4) 1 X X X a(5) 1 X X X X %e A347284 2 3 2 3 2 3 5 2 3 5 7 %e A347284 This demonstrates that a(n) is in A025487, that A002110(A001221(a(n))) is the greatest primorial divisor of a(n) as a consequence (prime divisors represented by capital X's), and Chernoff A006939(A001221(a(n))) | n, prime divisors represented by x's of any case. a(n) = A006939(A001221(a(n))) * k, k in A025487, represented by o's. %e A347284 Because each multiplicity e is necessarily distinct, we may compactify a(n) using Sum_{k=1..omega(a(n))} 2^(e-1). %e A347284 Prime shapes of a(12): %e A347284 12 o %e A347284 11 o %e A347284 10 o %e A347284 9 o %e A347284 8 o %e A347284 7 o o %e A347284 6 x o %e A347284 5 x x %e A347284 4 x x x %e A347284 3 x x x x %e A347284 2 x x x x x %e A347284 a(12) 1 X X X X X X %e A347284 2 3 5 7 ... %e A347284 a(12) = A006939(6) * 2^6 * 3^2 %e A347284 = 5244319080000 * 64 * 9 %e A347284 = 3020727790080000. %e A347284 O %e A347284 O x %e A347284 O x x %e A347284 O x x o x x %e A347284 O x x o x x o x x x %e A347284 O x o x x x x o x x x o x x x x %e A347284 a(1)*6 = a(2)*2 = a(3)*30 = a(4)*210 = a(5)*2 = a(6), etc., hence a(n) can be generated by a list of indices of primorials {1, 2, 1, 3, 4, 1, 1, 5, ...} and thereby be efficiently compactified. %t A347284 Array[Times @@ NestWhile[Append[#1, #2^Floor@ Log[#2, #1[[-1]]]] & @@ {#, Prime[Length@ # + 1]} &, {2^#}, Last[#] > 1 &] &, 18, 0] (* or *) %t A347284 Block[{nn = 2^5, a = {}, b, e, i, m, p}, Array[Set[e[#], 0] &, Floor[2^# If[# <= 4, 1/2, -1 + 2^(7/(3 #))]] &[Ceiling@ Log2@ nn]]; Do[e[1]++; b = {2^e[1]}; Do[If[Last[b] == 1, Break[], i = e[j]; p = Prime[j]; While[p^i < b[[j - 1]], i++]; AppendTo[b, p^(i - 1)]; If[i > e[j], e[j]++]], {j, 2, k}]; AppendTo[a, Times @@ b], {k, nn}]; Prepend[a, 1]] %t A347284 (* Generate up to 4096 terms from the bitmap image *) %t A347284 With[{r = ImageData@ Import["https://oeis.org/A347284/a347284.png"]}, {1}~Join~Table[Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, Reverse@ Position[r[[i]], 0.][[All, 1]]], {i, 20}]] %t A347284 (* Generate up to 10000 terms using b-file at A347354 (numbers are large as n increases, limit nn is set to 120): *) %t A347284 Block[{nn = 120, s, m}, s = Import["https://oeis.org/A347354/b347354.txt", "Data"][[1 ;; nn, -1]]; m = Prime@ Range@ Max[s]; {1}~Join~FoldList[Times, Map[Times @@ m[[1 ;; #]] &, s]]] (* _Michael De Vlieger_, Sep 25 2021 *) %Y A347284 Cf. A000079, A001221, A002110, A002182, A006939, A067255, A089576, A347285, A347288, A347354. %Y A347284 Subsequence of A025487, A055932, A363063. %K A347284 nonn %O A347284 0,2 %A A347284 _Michael De Vlieger_ and _David James Sycamore_, Aug 26 2021 %E A347284 Definition edited by _Peter Munn_, May 19 2023