cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347286 a(n) is n minus the number of odd divisors of n.

This page as a plain text file.
%I A347286 #57 Oct 14 2021 18:11:13
%S A347286 0,1,1,3,3,4,5,7,6,8,9,10,11,12,11,15,15,15,17,18,17,20,21,22,22,24,
%T A347286 23,26,27,26,29,31,29,32,31,33,35,36,35,38,39,38,41,42,39,44,45,46,46,
%U A347286 47,47,50,51,50,51,54,53,56,57,56,59,60,57,63,61,62,65,66,65,66
%N A347286 a(n) is n minus the number of odd divisors of n.
%C A347286 a(n) is n minus the number of partitions of n into consecutive parts.
%C A347286 This definition is in accordance with the diagram as shown below in the Example section which also appears in many sequences related to A237048, A237591, A237593 and possible others.
%C A347286 a(n) is also the number of zeros in the n-th row of A285898.
%F A347286 a(n) = n - A001227(n).
%e A347286 For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18. There are three odd divisors: 1, 3, 9, so a(18) = 18 - 3 = 15.
%e A347286 On the other hand the partitions of 18 into consecutive parts are [18], [7, 6, 5], [6, 5, 4, 3]. There are three of such partitions, so a(18) = 18 - 3 = 15.
%e A347286 Illustration of initial terms:
%e A347286 .
%e A347286    n   a(n)                   Diagram                 _
%e A347286    1     0                                          _|x|
%e A347286    2     1                                        _|x _|
%e A347286    3     1                                      _|x  |x|
%e A347286    4     3                                    _|x   _| |
%e A347286    5     3                                  _|x    |x _|
%e A347286    6     4                                _|x     _| |x|
%e A347286    7     5                              _|x      |x  | |
%e A347286    8     7                            _|x       _|  _| |
%e A347286    9     6                          _|x        |x  |x _|
%e A347286   10     8                        _|x         _|   | |x|
%e A347286   11     9                      _|x          |x   _| | |
%e A347286   12    10                    _|x           _|   |x  | |
%e A347286   13    11                  _|x            |x    |  _| |
%e A347286   14    12                _|x             _|    _| |x _|
%e A347286   15    11              _|x              |x    |x  | |x|
%e A347286   16    15            _|x               _|     |   | | |
%e A347286   17    15          _|x                |x     _|  _| | |
%e A347286   18    15        _|x                 _|     |x  |x  | |
%e A347286   19    17      _|x                  |x      |   |  _| |
%e A347286   20    18    _|x                   _|      _|   | |x _|
%e A347286   21    17   |x                    |x      |x    | | |x|
%e A347286 ...
%e A347286 In the above diagram the number of x's in row n equals A001227(n), the number of partitions n into consecutive parts.
%e A347286 a(n) is the number of square cells in row n that do not contain a "x".
%e A347286 In other words: a(n) is the number of square cells in row n that do not have a horizontal line segment above.
%t A347286 a[n_] := n - DivisorSigma[0, n/2^IntegerExponent[n, 2]]; Array[a, 70] (* _Amiram Eldar_, Sep 12 2021 *)
%o A347286 (PARI) a(n) = n - sumdiv(n, d, d%2); \\ _Michel Marcus_, Sep 12 2021
%Y A347286 Cf. A001227, A196020, A204217, A235791, A237048, A237591, A237593, A238005, A245092, A285898, A286000, A286001.
%K A347286 nonn,easy
%O A347286 1,4
%A A347286 _Omar E. Pol_, Sep 12 2021