This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347288 #16 Jun 30 2025 04:26:50 %S A347288 1,2,4,3,8,3,16,9,5,32,27,25,7,64,27,25,7,128,81,25,7,256,243,125,49, %T A347288 11,512,243,125,49,11,1024,729,625,343,121,13,2048,729,625,343,121,13, %U A347288 4096,2187,625,343,121,13,8192,6561,3125,2401,1331,169,17 %N A347288 Irregular triangle T(n,k) starting with 2^n followed by p_k^e_k = p_k^floor(log_p_k(p_(k-1)^e_(k-1))) such that e_k > 0. %C A347288 T(0,1) = 1 by convention. %C A347288 T(n,1) = 2^n. T(n,k) = p_k^e_k such that p_k^T(n,k) is the largest 1 < p_k^e_k < p_(k-1)^e_(k-1). %H A347288 Michael De Vlieger, <a href="/A347288/b347288.txt">Table of n, a(n) for n = 0..10367</a> (rows 0 <= n <= 300, flattened) %F A347288 T(n,1) = 2^n; T(n,k) = p_k^floor(log_p_k(p_(k-1)^T(n,k-1))). %F A347288 A347385(n,k) = p_k^T(n,k). %F A347288 A089576(n) = row lengths. %F A347288 A347284(n) = product of row n. %e A347288 Row 0 contains {1} by convention. %e A347288 Row 1 contains {2} since no nonzero exponent e exists such that 3^e < 2^1. %e A347288 Row 2 contains {4,3} since 3^1 < 2^2 yet 3^2 > 2^2. (We assume hereinafter that the powers listed are the largest possible smaller than the immediately previous term.) %e A347288 Row 3 contains {8,3} since 2^3 > 3^1. %e A347288 Row 4 contains {16,9,5} since 2^4 > 3^2 > 5^1, etc. %e A347288 Triangle begins: %e A347288 2 3 5 7 11 13 17 ... %e A347288 -------------------------------------------------- %e A347288 0: 1 %e A347288 1: 2 %e A347288 2: 4 3 %e A347288 3: 8 3 %e A347288 4: 16 9 5 %e A347288 5: 32 27 25 7 %e A347288 6: 64 27 25 7 %e A347288 7: 128 81 25 7 %e A347288 8: 256 243 125 49 11 %e A347288 9: 512 243 125 49 11 %e A347288 10: 1024 729 625 343 121 13 %e A347288 11: 2048 729 625 343 121 13 %e A347288 12: 4096 2187 625 343 121 13 %e A347288 13: 8192 6561 3125 2401 1331 169 17 %e A347288 14: 16384 6561 3125 2401 1331 169 17 %e A347288 ... %t A347288 {{1}}~Join~Array[Most@ NestWhile[Block[{p = Prime[#2]}, Append[#1, p^Floor@ Log[p, #1[[-1]]]]] & @@ {#, Length@ # + 1} &, {2^#}, #[[-1]] > 1 &] &, 13] (* _Michael De Vlieger_, Aug 28 2021 *) %Y A347288 Cf. A000217, A000961, A089576, A347284. %K A347288 nonn,tabf,easy %O A347288 0,2 %A A347288 _Michael De Vlieger_, Aug 28 2021