This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347293 #23 Jan 26 2022 08:58:45 %S A347293 1,2,3,3,5,5,4,8,4,8,5,9,9,9,9,6,15,10,9,10,15,7,13,13,13,13,13,13,8, %T A347293 20,8,20,8,20,8,20,9,21,21,9,21,21,9,21,21,10,27,18,27,18,15,18,27,18, %U A347293 27,11,21,21,21,21,21,21,21,21,21,21,12,40,20,24,20,40,12,40,20,24,20,40 %N A347293 Triangle read by rows: T(n, k) = Sum_{i=1..n} gcd(1 + (i-1) * (k-1),n) for 1 <= k <= n. %C A347293 Triangle without column 1 is symmetrical. %C A347293 Conjecture: Let f be an arbitrary arithmetic function. Define for n > 0 the sequence a(f; n) = Sum_{i=1..n, k=1..n} f(gcd(1 + (i-1) * (k-1),n)); then a(f; n) = dc(A000290(n), A000010(n) * dc(A008683(n), f(n)) where dc(x, y) is Dirichlet convolution of x and y; if f is multiplicative, then a(f; n) is multiplicative; row sums of this triangle use f(n) = n (see formula section). %F A347293 T(n, 1) = n; T(n, n) = A018804(n). %F A347293 T(n, k) = T(n, n+2-k) for 1 < k <= n. %F A347293 Conjecture: Row sums equal Dirichlet convolution of A000290 and A127473. %e A347293 The triangle T(n, k) for 1 <= k <= n starts: %e A347293 n \k : 1 2 3 4 5 6 7 8 9 10 11 12 %e A347293 ====================================================== %e A347293 1 : 1 %e A347293 2 : 2 3 %e A347293 3 : 3 5 5 %e A347293 4 : 4 8 4 8 %e A347293 5 : 5 9 9 9 9 %e A347293 6 : 6 15 10 9 10 15 %e A347293 7 : 7 13 13 13 13 13 13 %e A347293 8 : 8 20 8 20 8 20 8 20 %e A347293 9 : 9 21 21 9 21 21 9 21 21 %e A347293 10 : 10 27 18 27 18 15 18 27 18 27 %e A347293 11 : 11 21 21 21 21 21 21 21 21 21 21 %e A347293 12 : 12 40 20 24 20 40 12 40 20 24 20 40 %e A347293 etc. %Y A347293 Cf. A000010, A000290, A008683, A018804, A127473. %K A347293 nonn,easy,tabl %O A347293 1,2 %A A347293 _Werner Schulte_, Jan 23 2022