cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347293 Triangle read by rows: T(n, k) = Sum_{i=1..n} gcd(1 + (i-1) * (k-1),n) for 1 <= k <= n.

This page as a plain text file.
%I A347293 #23 Jan 26 2022 08:58:45
%S A347293 1,2,3,3,5,5,4,8,4,8,5,9,9,9,9,6,15,10,9,10,15,7,13,13,13,13,13,13,8,
%T A347293 20,8,20,8,20,8,20,9,21,21,9,21,21,9,21,21,10,27,18,27,18,15,18,27,18,
%U A347293 27,11,21,21,21,21,21,21,21,21,21,21,12,40,20,24,20,40,12,40,20,24,20,40
%N A347293 Triangle read by rows: T(n, k) = Sum_{i=1..n} gcd(1 + (i-1) * (k-1),n) for 1 <= k <= n.
%C A347293 Triangle without column 1 is symmetrical.
%C A347293 Conjecture: Let f be an arbitrary arithmetic function. Define for n > 0 the sequence a(f; n) = Sum_{i=1..n, k=1..n} f(gcd(1 + (i-1) * (k-1),n)); then a(f; n) = dc(A000290(n), A000010(n) * dc(A008683(n), f(n)) where dc(x, y) is Dirichlet convolution of x and y; if f is multiplicative, then a(f; n) is multiplicative; row sums of this triangle use f(n) = n (see formula section).
%F A347293 T(n, 1) = n; T(n, n) = A018804(n).
%F A347293 T(n, k) = T(n, n+2-k) for 1 < k <= n.
%F A347293 Conjecture: Row sums equal Dirichlet convolution of A000290 and A127473.
%e A347293 The triangle T(n, k) for 1 <= k <= n starts:
%e A347293 n \k :   1   2   3   4   5   6   7   8   9  10  11  12
%e A347293 ======================================================
%e A347293    1 :   1
%e A347293    2 :   2   3
%e A347293    3 :   3   5   5
%e A347293    4 :   4   8   4   8
%e A347293    5 :   5   9   9   9   9
%e A347293    6 :   6  15  10   9  10  15
%e A347293    7 :   7  13  13  13  13  13  13
%e A347293    8 :   8  20   8  20   8  20   8  20
%e A347293    9 :   9  21  21   9  21  21   9  21  21
%e A347293   10 :  10  27  18  27  18  15  18  27  18  27
%e A347293   11 :  11  21  21  21  21  21  21  21  21  21  21
%e A347293   12 :  12  40  20  24  20  40  12  40  20  24  20  40
%e A347293   etc.
%Y A347293 Cf. A000010, A000290, A008683, A018804, A127473.
%K A347293 nonn,easy,tabl
%O A347293 1,2
%A A347293 _Werner Schulte_, Jan 23 2022